Adrian,
R. J., 1991, “Particle Imaging Techniques for Experimental Fluid Mechanics,” Annu. Rev. Fluid Mech., 23, p. 261.

Barnhart,
D. H., Adrian,
R. J., and Papen,
R. J., 1995, “Phase-Conjugate Holographic System For High-Resolution Particle-Image Velocimetry,” Appl. Opt., 33, p. 7159.

Zhang,
J., Tao,
B., and Katz,
J., 1997, “Turbulent Flow Measurement In A Square Duct With Hybrid Holographic PIV,” Exp. Fluids, 23, p. 373.

Sinha M., and Katz J., 1998, “Flow Structure and Turbulence in a Centrifugal Pump with a vaned diffuser,” *Proceedings of the ASME Fluids Engineering Division*, Washington D.C, June 21–25, 1998.

Adkins,
G. G., and Smith,
L. H., 1982, “Spanwise Mixing In Axial-Flow Turbomachines,” ASME J. Eng. Power, 104, p. 97.

Gallimore,
S. J., and Cumpsty,
N. A., 1986, “Spanwise Mixing In Multistage Axial Flow Compressors: Part I-Experimental Investigations,” ASME J. Turbomach., 108, p. 2.

Adamczyk, J. J., 1985, “Model Equation For Simulating Flows In Multistage Turbomachinery,” *ASME-Paper No.*, 85-GT-226.

Rai,
M. M., 1987, “Navier–Stokes Simulation of Rotor/Stator Interaction Using Patched and Overlaid Grids,” J. Propul. Power, 3, p. 387.

Lakshminarayana,
B., 1991, “An Assessment of Computational Fluid Dynamic Techniques In The Analysis and Design of Turbomachinery,” The 1990 Freeman Scholar Lecture, ASME J. Fluids Eng., 113, p. 315.

Adamczyk,
J. J., Celestina,
M. L., Beach,
T. A., and Barnett,
M., 1990, “Simulation of Three-Dimensional Viscous Flow Within A Multistage Turbine,” ASME J. Turbomach., 112, p. 370.

Rhie, C. M., Gleixner, A. J., Spear, D. A., Fischberg, C. J., and Zacharias, R. M., 1995, “Development and Application of a Multistage Navier-Stokes Solver. Part A: Multistage Modeling Using Body Forces and Deterministic Stresses,” *ASME Int. Gas Turbine and Aeroengine Congress and Exposition*, 95-GT-342.

Speziale,
C., 1991, “Analytical Methods for the Development of Reynolds-Stress Closures in Turbulence,” Annu. Rev. Fluid Mech., 23, p. 107.

Dong,
R., Chu,
S., and Katz,
J., 1992, “Quantitative Visualization of The Flow Structure Within The Volute of A Centrifugal Pump, Part A: Technique,” ASME J. Fluids Eng., 114, p. 390.

Dong,
R., Chu,
S., and Katz,
J., 1992, “Quantitative Visualization of The Flow Structure Within the Volute of a Centrifugal Pump, Part B: Results And Analysis,” ASME J. Fluids Eng., 114, p. 390.

Dong,
R. , 1997, “Effect of Modification to Tongue and Impeller Geometry on Unsteady Flow, Pressure Fluctuations and Noise in a Centrifugal Pump,” ASME J. Turbomach., 119, p. 506.

Chu,
S., Dong,
R., and Katz,
J., 1995, “Relationship Between Unsteady Flow, Pressure Fluctuations and Noise In A Centrifugal Pump. Part A: Use of PIV Data To Compute The Pressure Field,” ASME J. Fluids Eng., 117, p. 24.

Chu,
S., Dong,
R., and Katz,
J., 1995, “Relationship Between Unsteady Flow, Pressure Fluctuations and Noise In A Centrifugal Pump. Part B: Effect of Blade-Tongue Interaction,” ASME J. Fluids Eng., 117, p. 30.

Roth,
G., Hart,
D., and Katz,
J., 1995, “Feasibility of Using the L64720 Video Motion Estimation Processor (MEP) to increase Efficiency of Velocity Map Generation for PIV,” ASME FED, 229, p. 387.

Sridhar,
G., and Katz,
J., 1995, “Drag And Lift Forces on Microscopic Bubbles Entrained by a Vortex,” Phys. Fluids, 7, p. 389.

Lejambre, C. R., Zacharias, R. M., Biederman, B. P., Gleixner, A. J., and Yetka, C. J., 1995, “Development and Application of a Multistage Navier–Stokes Solver. Part II: Application to a High Pressure Compressor Design,” *ASME Int. Gas Turbine Aeroengine Congress and Exposition*, 95-GT-343.

Kirtley,
K. R., Beach,
T. A., and Rogo,
C., 1993, “Aeroloads and Secondary Flows In A Transonic Mixed-Flow Turbine Stage,” ASME J. Turbomach., 115, p. 590.

Dean,
R. C., and Senoo,
Y., 1960, “Rotating Wake In Vaneless Diffusers,” ASME J. Basic Eng., 82, p. 563.

Leonard,
A., 1974, “Energy Cascade In Large-Eddy Simulations of Turbulent Fluid,” Adv. Geophys., 18, 237.

Rogallo,
R., and Moin,
P., 1984, “Numerical Simulation of Turbulent Flows,” Annu. Rev. Fluid Mech., 16, p. 99.

Lesieur,
M., and Metais,
O., 1996, “New Trends in Large-Eddy Simulations of Turbulence,” Annu. Rev. Fluid Mech., 28, p. 45–82.

Clark,
R. G., Ferziger,
J. H., and Reynolds,
W. C., 1979, “Evaluation of Subgrid Models Using an Accurately Simulated Turbulent Flow,” J. Fluid Mech., 91, p. 1.

Piomelli,
U., Yu,
Y., and Adrian,
R., 1996, “Subgrid-Scale Energy Transfer and Near-Wall Turbulence Structure,” Phys. Fluids, 8, p. 215.

Liu,
S., Meneveau,
C., and Katz,
J., 1994, “On the Properties of Similarity Subgrid-Scale Models as Deduced From Measurements in A Turbulent Jet,” J. Fluid Mech., 275, p. 83.

O’Neil,
J., and Meneveau,
C., 1997, “Subgrid-Scale Stresses and Their Modeling in the Turbulent Plane Wake,” J. Fluid Mech., 349, p. 253.

Liu, S., Meneveau, C., and Katz, J., 1997, “Locally Isotropic Turbulence in a Tank, and its Response to Rapid Straining,” *ASME Fluids Eng. Div. Summer Meeting*, FEDSM97-3156, Vancouver B.C., June 22–26, 1997.

Liu,
S., Meneveau,
C., and Katz,
J., 1995, “Experimental Study of Similarity Subgrid-Scale Models of Turbulence in the Far-Field of A Jet,” Appl. Sci. Res., 54, p. 177.

Liu,
S., Katz,
J., and Meneveau,
C., 1999, “Evolution and Modeling of Subgrid Scales During Rapid Straining of Turbulence,” J. Fluid Mech., 387, p. 281.

Piomelli,
U., Coleman,
G. N., and Kim,
J., 1997, “On the Effects of Nonequilibrium on the Subgrid-Scale Stresses,” Phys. Fluids, 9, p. 2740.

Bardina, J., Ferziger, J. H., and Reynolds, W. C., 1980, “Improved Subgrid Scale Models For Large Eddy Simulation,” *AIAA Paper, No. 80-1357*.