Couette Flow Profiles for Two Nonclassical Taylor-Couette Cells

[+] Author and Article Information
Michael C. Wendl

School of Medicine, Washington University, Saint Louis, MO 63108

Ramesh K. Agarwal

National Institute for Aviation Research, Wichita, KS 67260

J. Fluids Eng 122(2), 435-438 (Feb 07, 2000) (4 pages) doi:10.1115/1.483277 History: Received July 08, 1999; Revised February 07, 2000
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.


Taylor,  G. I., 1923, “Stability of a Viscous Liquid Contained Between Two Rotating Cylinders,” Philos. Trans. R. Soc. London, Ser. A, 223, pp. 289–343.
Panton, R. L., 1984, Incompressible Flow, Wiley, New York.
Criminale,  W. O., Jackson,  T. L., Lasseigne,  D. G., and Joslin,  R. D., 1997, “Perturbation Dynamics in Viscous Channel Flows,” J. Fluid Mech., 339, pp. 55–77.
Hua,  B. L., Gentil,  S. L., and Orlandi,  P., 1997, “First Transitions in Circular Couette Flow with Axial Stratification,” Phys. Fluids, 9, pp. 365–375.
Kedia,  R., Hunt,  M. L., and Colonius,  T., 1998, “Numerical Simulations of Heat Transfer in Taylor-Couette Flow,” ASME J. Heat Transfer, 120, pp. 65–71.
Wiener,  R. J., Snyder,  G. L., Prange,  M. P., Frediani,  D., and Diaz,  P. R., 1997, “Period-Doubling Cascade to Chaotic Phase Dynamics in Taylor Vortex Flow with Hourglass Geometry,” Phys. Rev. E, 55, pp. 5489–5497.
Wimmer,  M., 1985, “Einfluß der Geometrie auf Taylor-Wirbel,” Z. Angew. Math. Mech., 65, pp. T255–T256.
Wimmer,  M., 1988, “Viscous Flows and Instabilities Near Rotating Bodies,” Prog. Aerosp. Sci., 25, pp. 43–103.
Wimmer,  M., 1995, “An Experimental Investigation of Taylor Vortex Flow Between Conical Cylinders,” J. Fluid Mech., 292, pp. 205–227.
Abboud,  M., 1988, “Ein Beitrag zur theoretischen Untersuchung von Taylor-Wirbeln im Spalt zwischen Zylinder/Kegel-Konfigurationen,” Z. Angew. Math. Mech., 68, pp. T275–T277.
Eagles,  P. M., and Eames,  K., 1983, “Taylor Vortices Between Almost Cylindrical Boundaries,” J. Eng. Math., 17, pp. 263–280.
Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Clarendon Press, Oxford.
Berker, R., 1963, “Intégration des équations du mouvement d’un fluide visqueux incompressible,” Handbuch der Physik, (Flügge, S.), VIII/2, Berlin, Springer-Verlag.
Wang,  C. Y., 1991, “Exact Solutions of the Steady-State Navier-Stokes Equations,” Annu. Rev. Fluid Mech., 23, pp. 159–177.
Ölçer,  N. Y., 1964, “On the Theory of Conductive Heat Transfer in Finite Regions,” Int. J. Heat Mass Transf., 7, pp. 307–314.
Brezinski,  C., 1982, “Some New Convergence Acceleration Methods,” Math. Comput., 39, pp. 133–145.
Singh,  S., and Singh,  R., 1993, “Use of Linear and Nonlinear Algorithms in the Acceleration of Doubly Infinite Green’s Function Series,” IEE-Proc. H, 140, pp. 452–454.
Özişik, M. N., 1980, Heat Conduction, Wiley, New York.


Grahic Jump Location
Schematic of the conical cell (top) and the spanwise convex stator cell (bottom). Cross-hatched areas represent the rotor and the remaining line segments denote the stator. Cells are symmetric about the center line and the star notation indicates dimensional coordinates.
Grahic Jump Location
Convergence properties of raw and accelerated series at z=ϕ/2 in the conical cell; ϕ=1, –; ϕ=12.75, [[dashed_line]]. The abscissa and ordinate show nondimensional distance from the rotor and loge of the number of terms required for convergence, respectively.
Grahic Jump Location
Convergence properties of raw and accelerated series at θ=π/2 in the convex stator cell. Axes are the same as for Fig. 2.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In