Jaluria, Y., 1998, *Design and Optimization of Thermal Systems*, McGraw-Hill, New York.

Doyle, L. E., Keyser, C. A., Leach, J. L., Scharder, G. F., and Singer, M. B., 1987, *Manufacturing Processes and Materials for Engineers*, Prentice-Hall, Englewood Cliffs, NJ.

Schey, J. A., 1987, *Introduction to Manufacturing Processes*, 2nd Ed., McGraw-Hill, New York.

Kalpakjian, S., 1989, *Manufacturing Engineering and Technology*, Addison-Wesley, Reading, MA.

Szekely, J., 1979, *Fluid Flow Phenomena in Metals Processing*, Academic Press, New York.

Ghosh, A., and Mallik, A. K., 1986, *Manufacturing Science*, Ellis Horwood, Chichester, U.K.

Avitzur, B., 1968, *Metal Forming: Processes and Analysis*, McGraw-Hill, New York.

Altan, T., Oh, S. I., and Gegel, H. L., 1971, *Metal Forming: Fundamentals and Applications*, Amer. Soc. Metals, Metals Park, OH.

Fenner, R. T., 1979, *Principles of Polymer Processing*, Chemical Publishing, New York.

Easterling, K., 1983, *Introduction to Physical Metallurgy of Welding*, Butterworths, London, U.K.

Hughel, T. J., and Bolling, G. F., eds., 1971, *Solidification*, Amer. Soc. Metals, Metals Park, OH.

Kuhn, H. A., and Lawley, A., eds., 1978, *Powder Metallurgy Processing, New Techniques and Analysis*, Academic Press, New York.

Chen, M. M., Mazumder, J., and Tucker, C. L., eds., 1983, “*Transport Phenomena in Materials Processing*,” HTD Vol. 29, Amer. Soc. Mech. Engrs., New York.

Li, T., ed., 1985, *Optical Fiber Communications, Vol. 1: Fiber Fabrication*, Academic Press, New York.

Poulikakos, D., ed., 1996, *Transport Phenomena in Materials Processing*, Adv. Heat Transfer, Academic Press, San Diego, CA 18 .

Viskanta,
R., 1988, “Heat Transfer During Melting and Solidification of Metals,” ASME J. Heat Transfer, 110, pp. 1205–1219.

Lee,
S. H.-K., and Jaluria,
Y., 1996, “Effect of Variable Properties and Viscous Dissipation During Optical Fiber Drawing,” ASME J. Heat Transfer, 118, pp. 350–358.

Lee,
S. H.-K., and Jaluria,
Y., 1996, “Simulation of the Transport Processes in the Neck-Down Region of the Furnace Drawn Optical Fiber,” Int. J. Heat Mass Transf., 40, pp. 843–856.

Jaluria,
Y., 1996, “Heat and Mass Transfer in the Extrusion of Non-Newtonian Materials,” Adv. Heat Transfer, 28, pp. 145–230.

Jaluria,
Y., 1992, “Transport from Continuously Moving Materials Undergoing Thermal Processing,” Annu. Rev. Heat Transfer, 4, pp. 187–245.

Jaluria, Y., 1980, *Natural Convection Heat and Mass Transfer*, Pergamon Press, Oxford, UK.

Gebhart, B., Jaluria, Y., Mahajan, R. L., and Sammakia, B., 1988, *Buoyancy-Induced Flows and Transport*, Taylor and Francis, Philadelphia, PA.

Jaluria, Y., and Torrance, K. E., 1986, *Computational Heat Transfer*, Taylor and Francis, Philadelphia, PA.

Ramachandran,
N., Gupta,
J. P., and Jaluria,
Y., 1982, “Thermal and Fluid Flow Effects During Solidification in a Rectangular Enclosure,” Int. J. Heat Mass Transf., 25, pp. 187–194.

Bennon,
W. D., and Incropera,
F. P., 1988, “Developing Laminar Mixed Convection with Solidification in a Vertical Channel,” ASME J. Heat Transfer, 110, pp. 410–415.

Viswanath,
R., and Jaluria,
Y., 1993, “A Comparison of Different Solution Methodologies for Melting and Solidification Problems in Enclosures,” Numer. Heat Transfer, Part B, 24B, pp. 77–105.

Prescott,
P. J., and Incropera,
F. P., 1996, “Convection Heat and Mass Transfer in Alloy Solidification,” Adv. Heat Transfer, 28, pp. 231–338.

Harper, J. M., 1981, *Extrusion of Foods: Volume I*, CRC Press, Boca Raton, FL.

Kokini, J. L., Ho, C.-T., and Karwe, M. V., eds., 1992, *Food Extrusion Science and Technology*, Marcel Dekker, New York.

Wang,
S. S., Chiang,
C. C., Yeh,
A. I., Zhao,
B., and Kim,
I. H., 1989, “Kinetics of Phase Transition of Waxy Corn Starch at Extrusion Temperatures and Moisture Contents,” J. Food. Sci., 54, pp. 1298–1301.

Abib, A. H., Jaluria, Y., and Chiruvella, R. V., 1993, “Thermal Processing of Food Materials in a Single Screw Extruder,” *Heat Transfer in Food Processing*, ASME Heat Transfer Div., Vol. 254, ASME, New York, pp. 57–67.

Chiruvella,
R. V., Jaluria,
Y., and Karwe,
M. V., 1996, “Numerical Simulation of Extrusion Cooking of Starchy Materials,” J. Food. Eng., 30, pp. 449–467.

Jensen,
K. F., Einset,
E. O., and Fotiadis,
D. I., 1991, “Flow Phenomena in Chemical Vapor Deposition of Thin Films,” Annu. Rev. Fluid Mech., 23, pp. 197–232.

Mahajan,
R. L., 1996, “Transport Phenomena in Chemical Vapor-Deposition Systems,” Adv. Heat Transfer, 28, pp. 339–425.

Jensen,
K. F., and Graves,
D. B., 1983, “Modeling and Analysis of Low Pressure CVD Reactors,” J. Electrochem. Soc., 130, pp. 1950–1957.

Jaluria, Y., 1996, *Computer Methods for Engineering*, Taylor and Francis, Washington, DC.

Chiu,
W. K.-S., Jaluria,
Y., and Glumac,
N. C., 2000, “Numerical Simulation of Chemical Vapor Deposition Processes Under Variable and Constant Property Approximations,” Numer. Heat Transfer, 37, pp. 113–132.

Tadmor, Z., and Gogos, C., 1979, *Principles of Polymer Processing*, Wiley, New York.

Pearson, J. R. A., and Richardson, S. M., eds., 1983, *Computational Analysis of Polymer Processing*, Appl. Sci. Pub., London, UK.

Karwe,
M. V., and Jaluria,
Y., 1990, “Numerical Simulation of Fluid Flow and Heat Transfer in a Single-Screw Extruder for Non-Newtonian Fluids,” Numer. Heat Transfer, 17, pp. 167–190.

Choudhury,
S. Roy, Jaluria,
Y., and Lee,
S. H.-K., 1999, “Generation of neck-down profile for furnace drawing of optical fiber,” Numer. Heat Transfer, 35, pp. 1–24.

Jaluria,
Y., 1976, “Temperature Regulation of a Plastic-Insulated Wire in Radiant Heating,” ASME J. Heat Transfer, 98, pp. 678–680.

Jaluria,
Y., 1988, “Numerical Simulation of the Transport Processes in a Heat Treatment Furnace,” Int. J. Numer. Methods Eng., 25, pp. 387–399.

Siegel,
R., 1978, “Shape of Two-Dimensional Solidification Interface During Directional Solidification by Continuous Casting,” ASME J. Heat Transfer, 100, pp. 3–10.

Siegel,
R., 1984, “Two-Region Analysis of Interface Shape in Continuous Casting with Superheated Liquid,” ASME J. Heat Transfer, 106, pp. 506–511.

Chu,
T. Y., 1975, “A Hydrostatic Model of Solder Fillets,” The Western Electric Engineer, 19, No. 2, pp. 31–42.

Kou, S., 1996, *Transport Phenomena and Materials Processing*, Wiley, New York.

Jaluria,
Y., and Singh,
A. P., 1983, “Temperature Distribution in a Moving Material Subjected to Surface Energy Transfer,” Comput. Methods Appl. Mech. Eng., 41, pp. 145–157.

Choudhury,
S. Roy, and Jaluria,
Y., 1994, “Analytical Solution for the Transient Temperature Distribution in a Moving Rod or Plate of Finite Length with Surface Heat Transfer,” Int. J. Heat Mass Transf., 37, pp. 1193–1205.

Kwon,
T. H., Shen,
S. F., and Wang,
K. K., 1986, “Pressure Drop of Polymeric Melts in Conical Converging Flow: Experiments and Predictions” Polym. Eng. Sci., 28, pp. 214–224.

Lin,
P., and Jaluria,
Y., 1997, “Conjugate Transport in Polymer Melt Flow Through Extrusion Dies,” Polym. Eng. Sci., 37, pp. 1582–1596.

Patankar, S. V., 1980, *Numerical Heat Transfer and Fluid Flow*, Taylor and Francis, Philadelphia, PA.

Mallinson,
G. D., and de Vahl Davis,
G., 1973, “The Method of False Transient for the Solution of Coupled Elliptic Equations,” J. Comput. Phys., 12, pp. 435–461.

Leonard, B. P., 1997, “Bounded Higher-Order Upwind Multidimensional Finite-Volume Convection-Diffusion Algorithms,” *Advances in Numerical Heat Transfer*, Minkowycz, W. J. and Sparrow, E. M., eds., Vol. 1, Taylor and Francis, Philadelphia, PA, pp. 1–57.

Peaceman,
D. W., and Rachford,
H. H., 1955, “Numerical Solution of Parabolic and Elliptic Differential Equations,” J. Soc. Ind. Appl. Math., 3, pp. 28–41.

Acharya, S., 1994, “Solution-Adaptive Techniques in Computational Heat Transfer and Fluid Flow,” Springer, Heidelberg, Germany 14 , pp. 447–467.

Sastrohartono,
T., Esseghir,
M., Kwon,
T. H., and Sernas,
V., 1990, “Numerical and Experimental Studies of the Flow in the Nip Region of a Partially Intermeshing Co-Rotating Twin Screw Extruder,” Polym. Eng. Sci., 30, pp. 1382–1398.

Sastrohartono,
T., and Kwon,
T. H., 1990, “Finite Element Analysis of Mixing Phenomena in Tangential Twin Screw Extruders for Non-Newtonian Fluids,” Int. J. Numer. Methods Eng., 30, pp. 1369–1383.

Kwon,
T. H., Joo,
J. W., and Kim,
S. J., 1994, “Kinematics and Deformation Characteristics as a Mixing Measure in the Screw Extrusion Process,” Polym. Eng. Sci., 34, pp. 174–189.

Kalyon,
D. M., Gotsis,
A. D., Yilmazer,
U., Gogos,
C., Sangani,
H., Aral,
B., and Tsenoglou,
C., 1988, “Development of Experimental Techniques and Simulation Methods to Analyze Mixing in Co-Rotating Twin Screw Extrusion,” Adv. Polym. Technol., 8, pp. 337–353.

Rauwendaal, C., 1986, *Polymer Extrusion*, Hanser Pub., New York.

Esseghir, M., and Sernas, V., 1991, “A Cam-Driven Probe for Measurement of the Temperature Distribution in an Extruder Channel,” *SPE ANTEC Tech. Papers*, Vol. 37, pp. 54–57.

Esseghir, M., and Sernas, V., 1992, “Experiments on a Single Screw Extruder with a Deep and Highly Curved Screw Channel,” *Food Extrusion Science and Technology*, J. L. Kokini, C. T. Ho, and M. V. Karwe, eds., Marcel Dekker, New York, pp. 21–40.

Sastrohartono,
T., Jaluria,
Y., Esseghir,
M., and Sernas,
V., 1995, “A Numerical and Experimental Study of Three-Dimensional Transport in the Channel of an Extruder for Polymeric Materials,” Int. J. Heat Mass Transf., 38, pp. 1957–1973.

Wang,
Y., and White,
J. L., 1989, “Non-Newtonian Flow Modeling in the Screw Region of an Intermeshing Co-rotating Twin Screw Extruder,” J. Non-Newtonian Fluid Mech., 32, pp. 19–38.

Kwon, G. H., Jaluria, Y., Karwe, M. V., and Sastrohartono, T., 1991, “Numerical Simulation of the Transport Processes in a Twin screw Polymer Extruder,” *Prog. Modeling Polymer Processing*, A. I. Isayev, ed., Ch. 4, Hanser Pub., New York, pp. 77–115.

Sastrohartono,
T., Jaluria,
Y., and Karwe,
M. V., 1994, “Numerical Coupling of Multiple Region Simulations to Study Transport in a Twin Screw Extruder,” Numer. Heat Transfer, 25, pp. 541–557.

Chiruvella,
R. V., Jaluria,
Y., Karwe,
M. V., and Sernas,
V., 1996, “Transport in a Twin-Screw Extruder for the Processing of Polymers,” Polym. Eng. Sci., 36, pp. 1531–1540.

Zhu,
W., and Jaluria,
Y., 2001, “Transport Processes and Feasible Operating Domain in a Twin-Screw Polymer Extruder,” Polym. Eng. Sci., 41, pp. 107–117.

Karwe,
M. V., and Sernas,
V., 1996, “Application of Laser Doppler Anemometry to Measure Velocity Distribution Inside the Screw Channel of a Twin Screw Extruder,” Journal of Food Process Engineering, 19, pp. 135–152.

Bakalis,
S., and Karwe,
M. V., 1997, “Velocity Field in a Twin Screw Extruder” Int. J. Food Sci. Technol., 32, pp. 241–253.

Jaluria,
Y., Liu,
Y., and Chiruvella,
R. V., 1999, “Modeling and Simulation of the Solids Conveying and Unfilled Regions in Polymer Extrusion,” J. Reinf. Plast. Compos., 18, pp. 15–26.

Yin,
Z., and Jaluria,
Y., 1997, “Zonal Method to Model Radiative Transport in an Optical Fiber Drawing Furnace,” ASME J. Heat Transfer, 119, pp. 597–603.

Paek,
U. C., 1999, “Free Drawing and Polymer Coating of Silica Glass Optical Fibers,” ASME J. Heat Transfer, 121, pp. 775–788.

Goren,
S. L., and Wronski,
S., 1966, “The Shape of Low-Speed Jets of Newtonian Liquids,” J. Fluid Mech., 25, pp. 185–198.

Nickell,
R. E., Tanner,
R. I., and Caswell,
B., 1974, “The Solution of Viscous Incompressible Jet and Free-Surface Flows using Finite-Element Methods,” J. Fluid Mech., 65, pp. 189–206.

Lewis,
J. A., 1977, “The Collapse of a Viscous Tube,” J. Fluid Mech., 81, pp. 129–135.

Gifford,
W. A., 1982, “A Finite Element Analysis of Isothermal Fiber Formation,” Phys. Fluids, 25, pp. 219–225.

Levich,
V. G., and Krylov,
V. S., 1969, “Surface-Tension Driven Phenomena,” Annu. Rev. Fluid Mech., 1, pp. 293–316.

Dianov,
E. M., Kashin,
V. V., Perminov,
S. M., Perminova,
V. N., Rusanov,
S. Y., and Sysoev,
V. K., 1988, “The Effect of Different Conditions on the Drawing of Fibers from Preforms,” Glass Technol., 29, No. 6, pp. 258–262.

Choudhury,
S. Roy, and Jaluria,
Y., 1998, “Practical Aspects in the Thermal Transport During Optical Fiber Drawing,” J. Mater. Res., 13, pp. 483–493.

Yin,
Z., and Jaluria,
Y., 2000, “Neck Down and Thermally Induced Defects in High Speed Optical Fiber Drawing,” ASME J. Heat Transfer, 122, pp. 351–362.

Paek,
U. C., and Runk,
R. B., 1978, “Physical Behavior of the Neck-down Region during Furnace Drawing of Silica Fibers,” J. Appl. Phys., 49, pp. 4417–4422.

Paek,
U. C., Schroeder,
C. M., and Kurkjian,
C. R., 1988, “Determination of the Viscosity of High Silica Glasses During Fibre Drawing,” Glass Technol., 29, No. 6, pp. 263–266.

Issa,
J., Yin,
Z., Polymeropoulos,
C. E., and Jaluria,
Y., 1996, “Temperature Distribution in an Optical Fiber Draw Tower Furnace,” J. Mater. Process. Manuf. Sci., 4, pp. 221–232.

Liu, Y., and Polymeropoulos, C. E., 1998, “Measurement and Prediction of Thermocouple Probe Temperatures Within Glass Rods Subjected to Radiative Heating,” *Proc. 11th Int. Heat Transfer Conf.*, Kyongju, Korea, Taylor and Francis, Philadelphia, Vol. 4, pp. 27–32.

Christodoulou,
K. N., and Scriven,
L. E., 1989, “The Fluid Mechanics of Slide Coating,” J. Fluid Mech., 208, pp. 321–354.

Dussan,
E. B., Rame,
E., and Garoff,
S., 1991, “On Identifying the Appropriate Boundary Conditions at a Moving Contact Line: an Experimental Investigation,” J. Fluid Mech., 230, pp. 97–116.

Chen,
Q., Rame,
E., and Garoff,
S., 1997, “The Velocity Field Near Moving Contact Lines,” J. Fluid Mech., 337, pp. 49–66.

Quere,
D., 1999, “Fluid Coating on a Fiber,” Annu. Rev. Fluid Mech., 31, pp. 347–384.

Blyler,
L. L., and DiMarcello,
F. V., 1980, “Fiber Drawing, Coating and Jacketing,” Proc. IEEE, 68, pp. 1194–1198.

Paek,
U. C., 1986, “High Speed High Strength Fiber Coating,” J. Lightwave Technol., LT-4, pp. 1048–1059.

Simpkins,
P., and Kuck,
V., 2000, “Air Entrapment in Coatings Via Tip Streaming Meniscus,” Nature (London), 403, pp. 641–643.

Ravinutala, S., Rattan, K., Polymeropoulos, C., and Jaluria, Y., 2000, “Dynamic Menisci in a Pressurized Fiber Applicator,” *Proc. 49th Int. Wire Cable Symp.*, Atlantic City, NJ.

Abraham, A., and Polymeropoulos, C. E., 1999, “Dynamic Menisci on Moving Fibers,” *Proc. 48th Int. Wire Cable Symp.*, Atlantic City, NJ.

Vaskopulos,
T., Polymeropoulos,
C. E., and Zebib,
A., 1995, “Cooling of Optical Fibers in Aiding and Opposing Forced Gas Flow,” Int. J. Heat Mass Transf., 18, pp. 1933–1944.

Hanafusa,
H., Hibino,
Y., and Yamamoto,
F., 1985, “Formation Mechanism of Drawing-Induced E’ Centers in Silica Optical Fibers,” J. Appl. Phys., 58, No. 3, pp. 1356–1361.

Hibino,
Y., Hanafusa,
H., and Sakaguchi,
S., 1985, “Formation of Drawing-Induced E’ Centers in Silica Optical Fibers,” Jpn. J. Appl. Phys., 24, No. 9, pp. 1117–1121.

Flemings, M. C., 1974, *Solidification Processing*, McGraw-Hill, New York.

Viskanta, R., 1985, “Natural Convection in Melting and Solidification,” *Natural Convection: Fundamentals and Applications*, S. Kakac, W. Aung, and R. Viskanta, eds., Hemisphere Pub. Co., Washington, DC, pp. 845–877.

Huppert,
H. E., 1990, “The Fluid Mechanics of Solidification,” J. Fluid Mech., 212, pp. 209–240.

Davis,
S. H., 1990, “Hydrodynamic Interactions in Directional Solidification,” J. Fluid Mech., 212, pp. 241–262.

Prescott,
P. J., and Incropera,
F. P., 1996, “Convection Heat and Mass Transfer in Alloy Solidification,” Adv. Heat Transfer, 28, pp. 231–338.

Sparrow,
E. M., Patankar,
S. V., and Ramadhyani,
S., 1977, “Analysis of Melting in the Presence of Natural Convection in the Melt Region,” ASME J. Heat Transfer, 99, pp. 520–526.

Voller, V. R., 1997, “An Overview of Numerical Methods for Solving Phase Change Problems,” *Advances in Numerical Heat Transfer*, Minkowycz, W. J., and Sparrow, E. M., eds., Vol. 1, Taylor and Francis, Philadelphia, PA, pp. 341–380.

Viswanath,
R., and Jaluria,
Y., 1995, “Numerical Study of Conjugate Transient Solidification in an Enclosed Region,” Numer. Heat Transfer, 27, pp. 519–536.

Banaszek,
J., Jaluria,
Y., Kowalewski,
T. A., and Rebow,
M., 1999, “Semi-implicit FEM Analysis of Natural Convection in Freezing Water,” Numer. Heat Transfer, 36, pp. 449–472.

Bathelt,
A. G., Viskanta,
R., and Leidenfrost,
W., 1979, “An Experimental Investigation of Natural Convection in the Melted Region Around a Heated Horizontal Cylinder,” J. Fluid Mech., 90, pp. 227–240.

Gau,
C., and Viskanta,
R., 1986, “Melting and Solidification of a Pure Metal on a Vertical Wall,” ASME J. Heat Transfer, 108, pp. 174–181.

Wolff,
F., and Viskanta,
R., 1987, “Melting of a Pure Metal from a Vertical Wall,” Exp. Heat Transfer, 1, pp. 17–30.

Wolff,
F., and Viskanta,
R., 1988, “Solidification of a Pure Metal at a Vertical Wall in the Presence of Liquid Superheat,” Int. J. Heat Mass Transf., 31, pp. 1735–1744.

Thompson,
M. E., and Szekely,
J., 1988, “Mathematical and Physical Modeling of Double-Diffusive Convection of Aqueous Solutions Crystallizing at a Vertical Wall,” J. Fluid Mech., 187, pp. 409–433.

Beckermann,
C., and Wang,
C. Y., 1995, “Multiphase/-Scale Modeling of Alloy Solidification,” Annu. Rev. Heat Transfer, 6, pp. 115–198.

Wang,
C. Y., and Beckermann,
C., 1993, “A Unified Solute Diffusion Model for Columnar and Equiaxed Dendritic Alloy Solidification,” Mater. Sci. Eng., A171, pp. 199–211.

Kang,
B. H., and Jaluria,
Y., 1993, “Thermal Modeling of the Continuous Casting Process,” J. Thermophys. Heat Transfer, 7, pp. 139–147.

Lin,
P., and Jaluria,
Y., 1997, “Heat Transfer and Solidification of Polymer Melt Flow in a Channel,” Polym. Eng. Sci., 37, pp. 1247–1258.

Kang,
B. H., Jaluria,
Y., and Karwe,
M. V., 1991, “Numerical Simulation of Conjugate Transport from a Continuous Moving Plate in Materials Processing,” Numer. Heat Transfer, 19, pp. 151–176.

Arridge,
R. G. C., and Prior,
K., 1964, “Cooling Time of Silica Fibers,” Nature (London), 203, pp. 386–387.

Tsou,
F. K., Sparrow,
E. M., and Godstein,
R. J., 1967 “Flow and Heat Transfer in the Boundary Layer on a Continuous Moving Surface,” Int. J. Heat Mass Transf., 10, pp. 219–235.

Karwe,
M. V., and Jaluria,
Y., 1992, “Experimental Investigation of Thermal Transport from a Heated Moving Plate,” Int. J. Heat Mass Transf., 35, pp. 493–511.

Evans,
G., and Greif,
R., 1987, “A Numerical Model of the Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor,” ASME J. Heat Transfer, 109, pp. 928–935.

Fotiadis,
D. I., Boekholt,
M., Jensen,
K. F., and Richter,
W., 1990, “Flow and Heat Transfer in CVD Reactors: Comparison of Raman Temperature Measurements and Finite Element Model Predictions,” J. Cryst. Growth, 100, pp. 577–599.

Karki,
K. C., Sathyamurthy,
P. S., and Patankar,
S. V., 1993, “Three-Dimensional Mixed Convection in a Chemical Vapor Deposition Reactor,” ASME J. Heat Transfer, 115, pp. 803–806.

Chiu,
W. K. S., and Jaluria,
Y., 2000, “Continuous Chemical Vapor Deposition Processing with a Moving Finite Thickness Susceptor,” J. Mater. Res., 15, pp. 317–328.

Eversteyn,
F. C., Severin,
P. J. W., Brekel,
C. H. J., and Peek,
H. L., 1970, “A Stagnant Layer Model for the Epitaxial Growth of Silicon from Silane in a Horizontal Reactor,” J. Electrochem. Soc., 117, pp. 925–931.

Chiu,
W. K.-S., Richards,
C. J., and Jaluria,
Y., 2000, “Flow Structure and Heat Transfer in a Horizontal Converging Channel Heated From Below,” Phys. Fluids, 12, pp. 2128–2136.

Chiu, W. K. S., and Jaluria, Y., 1997, “Heat Transfer in Horizontal and Vertical CVD Reactors,” *ASME Heat Transfer Div.*, Vol. 347, Amer. Soc. Mech. Engrs., New York, pp. 293–311.

Rosenberger,
F., 1980, “Fluid Dynamics in Crystal Growth from Vapors,” PhysicoChem. Hydrodyn., 1, pp. 3–26.

Ostrach,
S., 1983, “Fluid Mechanics in Crystal Growth—The 1982 Freeman Scholar Lecture,” ASME J. Fluids Eng., 105, pp. 5–20.

Prasad,
V., Zhang,
H., and Anselmo,
A. P., 1997, “Transport Phenomena in Czochralski Crystal Growth Processes,” Adv. Heat Transfer, 30, pp. 313–435.

Brown,
R. A., 1988, “Theory of Transport Processes in Single Crystal Growth from the Melt,” AIChE J., 43, pp. 881–911.

Ostrach,
S., 1982, “Low-Gravity Fluid Flows,” Annu. Rev. Fluid Mech., 14, pp. 313–345.

Guyene, T. D., and Hunt, J., eds., 1983, “Materials Sciences Under Microgravity,” *European Space Agency*, Rep. ESA-SP-191.

Kamotani,
Y., Ostrach,
S., and Pline,
A., 1994, “Analysis of Velocity Data Taken in Surface Tension Driven Convection Experiment in Microgravity,” Phys. Fluids, 6, pp. 3601–3609.

Xu,
J., and Zebib,
A., 1998, “Oscillatory Two- and Three-Dimensional Thermocapillary Convection,” J. Fluid Mech., 364, pp. 187–209.

Le Cunff,
C., and Zebib,
A., 1999, “Thermocapillary-Coriolis Instabilities in Liquid Bridges,” J. Phys. Fluids, 11, pp. 2539–2545.

Schwabe,
D., 1999, “Microgravity Experiments on Thermocapillary Flow Phenomena: Examples and Perspectives,” Journal of Japanese Society of Microgravity Applications, 16, pp. 1–6.

Balasubramaniam,
R., and Lavery,
J. E., 1989, “Numerical Simulation of Thermocapillary Bubble Migration Under Microgravity for Large Reynolds and Marangoni Numbers,” Numer. Heat Transfer, 16, pp. 175–187.

Mundrane,
M., Xu,
J., and Zebib,
A., 1995, “Thermocapillary Convection in a Rectangular Cavity with a Deformable Interface,” Adv. Space Res., 16, pp. 41–53.

Wang,
G. X., and Prasad,
V., 2000, “Rapid Solidification: Fundamentals and Modeling,” Annu. Rev. Heat Transfer, 11, pp. 207–297.

Bian,
X., and Rangel,
R. H., 1996, “The Viscous Stagnation-Flow Solidification Problem,” Int. J. Heat Mass Transf., 39, pp. 3581–3594.

Delplanque,
J. P., and Rangel,
R. H., 1998, “A Comparison of Models, Numerical Simulation, and Experimental Results in Droplet Deposition Processes,” Acta Mater., 46, pp. 4925–4933.

Bussmann,
M., Mostaghimi,
J., and Chandra,
S., 1999, “On a Three-Dimensional Volume Tracking Method of Droplet Impact,” Phys. Fluids, 11, pp. 1406–1417.

Pasandideh-Fard,
M., Bhola,
R., Chandra,
S., and Mostaghimi,
J., 1998, “Deposition of Tin Droplets on a Steel Plate: Simulations and Experiments,” Int. J. Heat Mass Transf., 41, pp. 2929–2945.

Delplanque,
J. P., Cal,
W. D., Rangel,
R. H., and Lavernia,
E. J., 1997, “Spray Atomization and Deposition of Tantalum Alloys,” Acta Mater., 45, pp. 5233–5243.

Ahmed,
I., and Bergman,
T. L., 1999, “Thermal Modeling of Plasma Spray Deposition of Nanostructured Ceramics,” Journal of Thermal Spray Technology, 8, pp. 315–322.