0
TECHNICAL PAPERS

Optimal Feedback Control of Vortex Shedding Using Proper Orthogonal Decomposition Models

[+] Author and Article Information
Sahjendra N. Singh

Department of Electrical and Computer Engineering, University of Nevada, Las Vegas, NV 89154-4026

James H. Myatt, Gregory A. Addington, Siva Banda, James K. Hall

Airforce Research Laboratory (AFRL/VACA), 2210 Eighth St., Bldg. 146, Wright-Patterson AFB, OH 45433-7531

J. Fluids Eng 123(3), 612-618 (May 01, 2001) (7 pages) doi:10.1115/1.1385513 History: Received October 28, 2000; Revised May 01, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Hou,  L. S., and Ravindran,  S. S., 1997, “A Penalized Neuman Control Approach for Solving an Optimal Dirichlet Control Problem for Navier-Stokes Equations,” SIAM J. Control Optim., 36, pp. 1795–1814.
Ito,  K., and Ravindran,  S. S., 1998, “A Reduced Order Method for Simulation and Control of Fluid Flows,” J. Comput. Phys., 143, pp. 403–425.
Burns, J. A., and Ou, Y. R., 1994, “Feedback Control of the Driven Cavity Problem Using LQR Design,” Proc. 33rd IEEE Conf. on Decision and Control, Florida, pp. 289-284.
Joslin,  R. D., Gunzburger,  M. D., Nicolaides,  R., Erlebacher,  G., and Hussaini,  M. Y., 1997, “A Self-Contained, Automated Methodology for Optimal Flow Control Validated for Transition Delay,” AIAA J., 35, pp. 816–824.
Sritharan, S. S., 1992, “An Optimal Control Problem in Exterior Hydrodynamics,” Proceedings of the Royal Society of Edinburgh, Vol. 121A, pp. 5–32.
Seifert,  A., Darabi,  A., and Wyganski,  I., 1996, “Delay of Airfoil Stall by Periodic Excitation,” J. Aircr., 33, No. 4.
Modi,  V. J., Mokhtarian,  F., Fernando,  M., and Yokomizo,  T., 1991, “Moving Surface Boundary-Layer Control as Applied to Two-Dimensional Airfoils,” J. Aircr., 28, pp. 104–112.
Roussopoulos,  K., 1993, “Feedback Control of Vortex Shedding at Low Reynold’s Numbers,” J. Fluid Mech., 248, pp. 267–296.
Maddlon, D. V., Collier, F. S., Montoya, F. S., and Land, C. K., 1989, “Transition Flight Experiments on a Swept Wing with Suction,” AIAA Paper 89-1893.
Smith, B. L., and Glezer, A., 1997, “Vectoring and Small Scale Motions Effected in Free Shear Flows Using Synthetic Jet Actuators,” AIAA Paper 97-0213.
Rediniotis, O. K., Ko, J., Yue, X., and Kurdila, A. J., 1999, “Synthetic Jets, their Reduced Order Modeling and Applications to Flow Control,” AIAA Paper 99-1000.
Karhunen, K., 1946, “Zur Spectral Theorie Stochasticher Prozesse,” Annales Academiae Scientiarum Fennicae, Mthematica-Physica, 37 .
Loeve, M., 1945, “Functiona Aleatoire de Second Ordre,” Comptes Rendus Academie des Sciences, Paris.
Aubry,  N., Holmes,  P., Lumley,  J. L., and Stone,  E., 1988, “The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer,” J. Fluid Mech., 192, pp. 115–173.
Berkooz,  G., Holmes,  P., and Lumley,  J. L., 1993, “The Proper Orthogonal Decomposition in the Analysis of Turbulent Channel Flow,” Annu. Rev. Fluid Mech., 25, No. 5, pp. 539–575.
Rajaee,  M., Karlson,  S. K., and Sirovich,  L., 1994, “Low Dimensional Description of Free Shear Flow Coherent Structures and their Dynamic Behavior,” J. Fluid Mech., 258, pp. 1401–1402.
Rempfer,  D., 1996, “Investigations of Boundary Layer Transition via Galerkin Projections on Empirical Eigen Functions,” Phys. Fluids, 8, No. 1, pp. 175–188.
Ravindran, S. S., 1999, “Proper Orthogonal Decomposition in Optimal Control of Fluids,” NASA/TM-1999-209113.
Graham,  W. R., Peraire,  J., and Tang,  K. Y., 1999, “Optimal Control of Vortex Shedding Using Low Order Models, Part I: Open-loop Model Development,” Int. J. Numer. Methods Eng., 44, No. 7, pp. 945–972.
Graham,  W. R., Peraire,  J., and Tang,  K. Y., 1999, “Optimal Control of Vortex Shedding Using Low Order Models, Part II: Model Based Control,” Int. J. Numer. Methods Eng., 44, No. 7, pp. 9973–990.
Donea,  J., Giuliani,  S., Laval,  H., and Quartapelle,  L., 1982, “Finite Element Solution of the Unsteady Navier-Stokes Equations by a Fractional Step Method,” Comput. Methods Appl. Mech. Eng., 30. pp. 53–73.
Zienkiewicz,  O. C., Szmelter,  J., and Peraire,  J., 1990, “Compressible and Incompressible Flow; An Algorithm for all Seasons,” Comput. Methods Appl. Mech. Eng., 78, pp. 105–121.
Chen, C-T., 1999, Linear Systems Theory and Design, Oxford University Press, New York, pp. 151-152.
Athans, M., and Falb, P., 1966, Optimal Control, McGraw-Hill, New York.
Vidyasagar, M., 1993, Nonlinear Systems Analysis, Prentice-Hall, Englewood Cliffs, NJ.

Figures

Grahic Jump Location
Simulation domain for flow past circular cylinder (diameter of cylinder=1; upstream and downstream boundaries from center of cylinder=10, 15; width=20)
Grahic Jump Location
Open-loop response of Model I: (2a) Amplitude (mode 1); (2b) amplitude (mode 2); (2c) amplitude phase plot (mode 3, mode 4); (2d) norm of mode amplitudes
Grahic Jump Location
Closed-loop control (Model I): (3a) Amplitude mode 1 to 3 (solid; [[dot_dash_line]]; [[dashed_line]]); (3b) amplitude mode 4 to 6 (solid; [[dot_dash_line]]; [[dashed_line]]); (3c) amplitude mode 7 to 9 (solid; [[dot_dash_line]]; [[dashed_line]]); (3d) amplitude mode 10 to 12 (solid; [[dot_dash_line]]; [[dashed_line]]); (3e) amplitude mode 13 to 15 (solid; [[dot_dash_line]]; [[dashed_line]]); (3f) amplitude mode 16 to 18 (solid; [[dot_dash_line]]; [[dashed_line]]); (3g) norm of mode amplitudes; (3h) angular velocity and control input (solid; [[dashed_line]])
Grahic Jump Location
Open-loop response of Model II: (4a) Amplitude (mode 1); (4b) amplitude (mode 2); (4c) amplitude phase plot (mode 5, mode 6); (4d) norm of mode amplitudes
Grahic Jump Location
Closed-loop control (Model II): (5a) Amplitude mode 1 to 3 (solid; [[dot_dash_line]]; [[dashed_line]]); (5b) amplitude mode 4 to 6 (solid; [[dot_dash_line]]; [[dashed_line]]); (5c) amplitude mode 7 to 9 (solid; [[dot_dash_line]]; [[dashed_line]]); (5d) amplitude mode 10 to 12 (solid; [[dot_dash_line]]; [[dashed_line]]); (5e) amplitude mode 13 to 15 (solid; [[dot_dash_line]]; [[dashed_line]]); (5f) amplitude mode 16 to 18 (solid; [[dot_dash_line]]; [[dashed_line]]); (5g) norm of mode amplitudes; (5h) angular velocity

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In