0
TECHNICAL PAPERS

Verification of Finite Volume Computations on Steady-State Fluid Flow and Heat Transfer

[+] Author and Article Information
J. Cadafalch, C. D. Pérez-Segarra, R. Cònsul, A. Oliva

Centre Tecnològic de Transferència de Calor (CTTC), Lab. de Termotècnia i Energètica, Universitat Politècnica de Catalunya (UPC), c/ Colom 11, 08222 Terrassa, Spaine-mail: labtie@labtie.mmt.upc.es

J. Fluids Eng 124(1), 11-21 (Nov 12, 2001) (11 pages) doi:10.1115/1.1436092 History: Received May 16, 2001; Revised November 12, 2001
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

AIAA, 1998, “AIAA Guide for the Verification and Validation of Computational Fluid Dynamics Simulations,” AIAA, G-077.
Journal of Fluids Engineering, 1993, “Journal of Fluids Engineering Editorial Policy. Statement on the Control of Numerical Accuracy, Editorial,” ASME J. Fluids Eng., 115, pp. 339–342.
AIAA Journal, 1998, “Special Section: Credible Computational Fluid Dynamics Simulations,” AIAA J., 36, No. 5, , pp. 665–764.
Roache,  P. J., 1998, “Verification of Codes and Calculations,” AIAA J., 36, No. 5, pp. 696–702.
Celik,  I., and Zhang,  W. M., 1995, “Calculation of Numerical Uncertainty using Richardson Extrapolation: Application to some Simple Turbulent Flow Calculations,” ASME J. Fluids Eng., 117, pp. 439–445.
Pérez-Segarra,  C. D., Oliva,  A., Costa,  M., and Escanes,  F., 1995, “Numerical Experiments in Turbulent Natural and Mixed convection in Internal Flows,” Int. J. Numer. Methods Heat Fluid Flow, 5, pp. 13–33.
Cònsul, R., Pérez-Segarra, C. D., Cadafalch, J., Soria, M., and Oliva, A., 1998, “Numerical Analysis of Laminar Flames Using the Domain Decomposition Method,” Proceedings of the Fourth ECCOMAS Computational Fluid Dynamics Conference, Vol. 1, Part 2, pp. 996–1001, Wiley, Athens, Greece.
Roache,  P. J., 1994, “Perspective: A Method for Uniform Reporting of Grid Refinement Studies,” ASME J. Fluids Eng., 116, pp. 405–413.
Cadafalch,  J., Oliva,  A., Pérez-Segarra,  C. D., Costa,  M., and Salom,  J., 1999, “Comparative Study of Conservative and Non-Conservative Interpolation Schemes for the Domain Decomposition Method on Laminar Incompressible Flows,” Numer. Heat Transfer, Part B, 35, pp. 65–84.
Cadafalch, J., Pérez-Segarra, C. D., Soria, M., and Oliva, A., 1998, “Fully Conservative Multiblock Method for the Resolution of Turbulent Incompressible Flows,” Proceedings of the Fourth ECCOMAS Computational Fluid Dynamics Conference, 1 , Part 2, pp. 1234–1239, Wiley, Athens, Greece.
Pérez-Segarra, C. D., Oliva, A., and Cònsul, R., 1996, “Analysis of some Numerical Aspects in the Solution of the Navier-Stokes Equations using Non-Orthogonal Collocated Finite-Volume Methods,” Proceedings of the Third ECCOMAS Computational Fluid Dynamics Conference, pp. 505–511, Wiley, Paris, France.
Demirdzic,  I., Lilek,  Z., and Peric,  M., 1992, “Fluid Flow and Heat Transfer Test Problems for Non-Orthogonal Grids: Bench-Mark Solutions,” Int. J. Numer. Methods Fluids, 15, pp. 329–354.
Pérez-Segarra, C. D., Cadafalch, J., Rigola, J., and Oliva, A., 1999, “Numerical Study of Turbulent Fluid Flow through Valves,” Proceedings of the International Conference on Compressors and Their Systems, City University, London, pp. 13–14 Sept.
Sommers, L. M. T., 1994, PhD thesis, Technical University of Eindhoven.
Soria, M., Cadafalch, J., Cònsul, R., and Oliva, A., 2000, “A Parallel Algorithm for the Detailed Numerical Simulation of Reactive Flows,” Proceedings of the 1999 Parallel Computational Fluid Dynamics Conference, pp. 389–396, Williamsburg, VA.

Figures

Grahic Jump Location
Case A: Cavity with moving top wall. (a) Two-dimensional case. (b) Three-dimensional case.
Grahic Jump Location
Case B: Axisymmetric turbulent flow through a compressor valve. (a) Idealized valve geometry. (b) Mesh and computational domain.
Grahic Jump Location
Case C: Premixed methane/air laminar flat flame on a perforated burner. (a) Idealized geometry. (b) Mesh and computational domain.
Grahic Jump Location
Case D: Heat transfer from an isothermal cylinder enclosed by a square duct. Mesh and computational domain.
Grahic Jump Location
Case D: Heat transfer from an isothermal cylinder enclosed by a square duct. Post-processing results. Local estimators of the solution with the grid n=32 (post-processing grid n=8) and the numerical scheme UDS.
Grahic Jump Location
Case with analytical solution: One dimensional steady state convection-diffusion process without source term, with constant transport properties and with Dirichlet boundary conditions. Computational domain: square domain with an inclination of 45 deg and discretized by means of a uniform mesh of n*n control volumes.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In