Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods

[+] Author and Article Information
C. Prud’homme, D. V. Rovas, K. Veroy, L. Machiels

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

Y. Maday

Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, Boı⁁te courrier 187, 75252 Paris, Cedex 05, France

A. T. Patera

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

G. Turinici

ASCI-CNRS Orsay, and INRA Rocquencourt M3N, B.P. 105, 78153 LeChesnay Cedex France

J. Fluids Eng 124(1), 70-80 (Nov 02, 2001) (11 pages) doi:10.1115/1.1448332 History: Received September 13, 2001; Revised November 02, 2001
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Chan,  T. F., and Wan,  W. L., 1997, “Analysis of projection methods for solving linear systems with multiple right-hand sides,” SIAM J. Sci. Comput. (USA), 18, No. 6, p. 1698.
Farhat,  C., Crivelli,  L., and Roux,  F., 1994, “Extending substructure based iterative solvers to multiple load and repeated analyses,” Comput. Methods Appl. Mech. Eng., 117, No. 1–2, pp. 195–209.
Akgun,  M. A., Garcelon,  J. H., and Haftka,  R. T., 2001, “Fast exact linear and non-linear structural reanalysis and the Sherman-Morrison-Woodbury formulas,” Int. J. Numer. Methods Eng., 50, No. 7, pp. 1587–1606.
Yip,  E. L., 1986, “A note on the stability of solving a rank-p modification of a linear system by the Sherman-Morrison-Woodbury formula,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput., 7, No. 2, pp. 507–513.
Allgower,  E., and Georg,  K., 1980, “Simplicial and continuation methods for approximating fixed-points and solutions to systems of equations,” SIAM Rev., 22, No. 1, pp. 28–85.
Rheinboldt,  W., 1981, “Numerical analysis of continuation methods for nonlinear structural problems,” Comput. Struct., 13, No. 1–3, pp. 103–113.
Almroth,  B. O., Stern,  P., and Brogan,  F. A., 1978, “Automatic choice of global shape functions in structural analysis,” AIAA J., 16, pp. 525–528.
Noor,  A. K., and Peters,  J. M., 1980, “Reduced basis technique for nonlinear analysis of structures,” AIAA J., 18, No. 4, pp. 455–462.
Balmes,  E., 1996, “Parametric families of reduced finite element models theory and applications,” Mech. Syst. Signal Process., 10, No. 4, pp. 381–394.
Barrett,  A., and Reddien,  G., 1995, “On the reduced basis method,” Z. Angew. Math. Mech., 75, No. 7, pp. 543–549.
Fink,  J. P., and Rheinboldt,  W. C., 1983, “On the error behaviour of the reduced basis technique for nonlinear finite element approximations,” Z. Angew. Math. Mech., 63, pp. 21–28.
Peterson,  J. S., 1989, “The reduced basis method for incompressible viscous flow calculations,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput., 10, No. 4, pp. 777–786.
Porsching,  T. A., 1985, “Estimation of the error in the reduced basis method solution of nonlinear equations,” Math. Comput., 45, No. 172, pp. 487–496.
Rheinboldt,  W., 1993, “On the theory and error estimation of the reduced basis method for multi-parameter problems,” Nonlinear Analysis, Theory, Methods and Applications, 21, No. 11, pp. 849–858.
Veroy, K., Leurent, T., Prud’homme, C., Rovas, D., and Patera, A., 2002, “Reliable real-time solution of parametrized elliptic partial differential equations: Application to elasticity,” Proceedings SMA Symposium 2002.
Maday, Y., Machiels, L., Patera, A. T., and Rovas, D. V., 2000, “Blackbox reduced-basis output bound methods for shape optimization,” Proceedings 12th International Domain Decomposition Conference, eds. T. Chan, et al., ddm.org, pp. 429–436.
Evans,  A. G., Hutchinson,  J. W., Fleck,  N. A., Ashby,  M. F., and Wadley,  H. N. G., 2001, “The topological design of multifunctional cellular metals,” Prog. Mater. Sci., 46, No. 3–4, pp. 309–327.
Wicks,  N., and Hutchinson,  J. W., 2001, “Optimal truss plates,” Int. J. Solids Struct., 38, No. 30–31, pp. 5165–5183.
Maday,  Y., Patera,  A., and Turinici,  G., “Global a priori convergence theory for reduced-basis approximation of single-parameter symmetric coercive elliptic partial differential equations,” C. R. Acad. Sci. Paris Série I. Submitted.
Maday,  Y., Patera,  A. T., and Peraire,  J., 1999, “A general formulation for a posteriori bounds for output functionals of partial differential equations; Application to the eigenvalue problem,” C. R. Acad. Sci. Paris, Série I, 328, pp. 823–828.
Machiels,  L., Peraire,  J., and Patera,  A. T., 2001, “A posteriori finite element output bounds for the incompressible Navier-Stokes equations; Application to a natural convection problem,” J. Comput. Phys., 172, pp. 401–425.
Patera,  A. T., and Ro̸nquist,  E. M., 2001, “A general output bound result: Application to discretization and iteration error estimation and control,” Math. Models Methods Appl. Sci., 11, No. 4, pp. 685–712.
Maday, Y., Patera, A. T., and Rovas, D. V., 2001, “A blackbox reduced-basis output bound method for noncoercive linear problems,” Seminaive du College de France J. L. Lions, Series in Applied Mathematics, eds. P. G. Ciarlet and P. L. Lions, Elsevier–Gauthier–Villars, Vol. 7, accepted, July 2002.
Machiels,  L., Maday,  Y., Oliveira,  I. B., Patera,  A., and Rovas,  D., 2000, “Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems,” C. R. Acad. Sci. Paris, Série I, 331, No. 2, pp. 153–158.
Antoulas,  A., and Sorensen,  D., 2001 “Approximation of large-scale dynamical systems: An overview,” Technical report, Rice University.
Sirovich,  L., and Kirby,  M., 1987, “Low-dimensional procedure for the characterization of human faces,” J. Opt. Soc. Am. A, 4, No. 3, pp. 519–524.
Machiels,  L., Patera,  A., and Rovas,  D., 2001, “Reduced basis output bound methods for parabolic problems,” Comput. Methods Appl. Mech. Eng., Submitted.
Machiels,  L., Maday,  Y., and Patera,  A. T., 2000, “A flux-free nodal Neumann subproblem approach to output bounds for partial differential equations,” C. R. Acad. Sci. Paris, Série I, 330, No. 3, pp. 249–254.


Grahic Jump Location
Two- and three-dimensional thermal fins



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In