LDA-Measurements of Transitional Flows Induced by a Square Rib

[+] Author and Article Information
S. Becker, F. Durst

Lehrstuhl für Strömungsmechanik (LSTM), Friedrich-Alexander Universität, Cauerstr. 4, D-95058 Erlangen-Nuremberg, Germany

C. M. Stoots

Idaho National Engineering and Environmental Laboratory (INEEL), Idaho Falls, ID 83415-3890Lehrstuhl für Strömungsmechanik (LSTM), Friedrich-Alexander Universität, Cauerstr. 4, D-95058 Erlangen-Nuremberg, Germany

K. G. Condie

Idaho National Engineering and Environmental Laboratory (INEEL), Idaho Falls, ID 83415-3890

D. M. McEligot

, Idaho National Engineering and Environmental Laboratory (INEEL), Idaho Falls, ID 83415-3885University of Arizona, Tucson, AZ 85721

J. Fluids Eng 124(1), 108-117 (Aug 08, 2001) (10 pages) doi:10.1115/1.1446067 History: Received October 04, 2000; Revised August 08, 2001
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Purtell,  L. P., Klebanoff,  P. S., and Buckley,  F. T., 1981, “Turbulent Boundary Layer at Low Reynolds Number,” Phys. Fluids, 24, pp. 802–811.
Murlis,  J., Tsai,  H. M., and Bradshaw,  P., 1982, “The Structure of Turbulent Boundary Layers at Low Reynolds Numbers,” J. Fluid Mech., 122, pp. 13–56.
Erm,  L. P., and Joubert,  P. N., 1991, “Low-Reynolds-Number Turbulent Boundary Layers,” J. Fluid Mech., 230, pp. 1–44.
Suder, K. L., O’Brien, J. E., and Reshotko, E., 1988, “Experimental Study of Bypass Transition in a Boundary Layer,” NASA TM 100913.
Savill, A. M., 1993, “Some Recent Progress in the Turbulence Modelling of By-Pass Transition,” Near-Wall Turbulent Flows, R.M.C. So, C. G. Speziale and B. E. Launder, eds., Elsevier, Amsterdam, pp. 829–848.
Qui, S., and Simon, T. W., 1997, “An Experimental Investigation of Transition as Applied to Low Pressure Turbine Suction Surface Flows,” ASME paper 97-GT-455. Also Simon, T. W., Qui, S., and Yuan, K., 2000, “Measurements in a Transitional Boundary Layer Under Low-Pressure Turbine Airfoil Conditions,” NASA-CR-2000-209957.
Lee,  H., and Kang,  S.-H., 2000, “Flow Characteristics of Transitional Boundary Layers on an Airfoil in Wakes,” ASME J. Fluids Eng., 122, pp. 522–532.
Fage, A., 1943, “The Smallest Size of Spanwise Surface Corrugation Which Affects Boundary Layer Transition on an Airfoil,” (British) Aero. Research Council, R&M 2120.
Schlichting, H., 1979, Boundary Layer Theory, 7th ed., McGraw-Hill, New York.
Masad,  J. A., 1995, “On the Roughness Reynolds Number Transition Criterion,” ASME J. Fluids Eng., 117, pp. 727–729.
Durst,  F., Fischer,  M., Becker,  S., Jovanovic,  J., and Schenck,  T., 1999, “Untersuchung des laminar-turbulenten Strömungsumschlags hinter Rauigkeitselementen mit der Laser-Doppler-anemometrie,” Tech. Report Du 101/44-2, LSTM Erlangen, Juli.
Klebanoff,  P. S., and Tidstrom,  K. D., 1972, “Mechanism by Which a Two-Dimensional Roughness Element Induces Boundary-Layer Transition,” Phys. Fluids15, pp. 1173–1188.
Arnal,  D., Juillen,  J. C., and Olive,  M., 1979, “Etude expe’rimentale du de’clenchement de la transition par rugosite’s en e’coulement uniforme incompressible,” Tech. Report OA No. 4/5018 AYD, ONERA.
Arnal, D., 1984, “Description and Prediction of Transition in Two-Dimensional Incompressible Flow,” AGARD-R-709, pp. 2–1 to 2–71.
Kim,  J., Moin,  P., and Moser,  R. D., 1987, “Turbulence Statistics in Fully-Developed Channel Flow at Low Reynolds Number,” J. Fluid Mech., 177, pp. 133–166.
Horiuhi,  K., 1992, “Establishment of the DNS Database of Turbulent Transport Phenomena,” Report, Grants-in-aid for Scientific Research, No. 02302043.
Laurien,  E., and Kleiser,  L., 1989, “Numerical Simulation of Boundary-Layer Transition and Transition Control,” J. Fluid Mech., 199, pp. 403–440.
Fasel,  H., Rist,  U., and Konzelmann,  U., 1990, “Numerical Investigation of the Three-Dimensional Development in Boundary-Layer Transition,” AIAA J., 28, pp. 29–37.
Spalart, P. R., 1993, “Numerical Study of Transition Induced by Suction Devices,” Near-Wall Turbulent Flows, R. M. C. So, C. G. Speziale, and B. E. Launder, eds., Elsevier, Amsterdam, pp. 849–858.
Narasimha, R., 1998, Post Workshop Summary, Minnowbrook II, 1997 Workshop on Boundary Layer Transition in Turbomachines, J. E. laGraff and D. E. Ashpis, eds., NASA/CP-1998-206958, pp. 485–495.
Patel,  V. C., 1998, “Perspective: Flow at High Reynolds Number and Over Rough Surfaces—Achilles Heel of CFD,” ASME J. Fluids Eng., 120, pp. 434–444.
Corino,  E. R., and Brodkey,  R. S., 1969, “A Visual Investigation of the Wall Region in Turbulent Flow,” J. Fluid Mech., 37, pp. 1–30.
Budwig,  R., 1994, “Refractive Index Matching Methods for Liquid Flow Investigations,” Exp. Fluids, 17, pp. 330–335.
Condie,  K. G., Stoots,  C. M., Becker,  S., Alahyari,  A. A., Durst,  F., and McEligot,  D. M., 1998, “The Structure of Boundary Layer Transition Induced by a Square Rib (A New Large-Scale MIR Flow System for Measurements of Boundary Layer Transition,” Tech. Report INEEL/EXT-98-01039, Idaho National Engineering and Environmental Laboratory.
Stoots, C. M., Becker, S., Condie, K. G., Durst, F., and McEligot, D. M., 2001, “A Large-Scale Matched-Index-of-Refraction Flow Facility for LDA Studies Around Complex Geometries,” Exp. Fluids, 30 , pp. 391–398.
Durst, F., Keck, T., and Kleine, R., 1979, “Turbulence Quantities and Reynolds Stress in Pipe Flow of Polymer Solutions Measured by Two-Channel Laser-Doppler Anemometry,” Proc., 6th Symp. On Turbulence, Rolla, Mo.
Strunz, M., 1987, Ein Laminarwasserkanal zur Untersuchung von Stabilitätsproblemen in der Strömungsgrenzschicht, Doctoral thesis, U. Stuttgart.
Wiegand, T., 1996, “Experimentelle Untersuchungen zum laminar-turbulenten Transitionsprozeß eines Wellenzuges in einer Plattengrenzschict,” Doctoral thesis, U. Stuttgart.
Hoesel,  W., and Rodi,  W., 1977, “New Biasing Elimination Method for Laser Doppler Velocimeter Counter Processing,” Rev. Sci. Instrum., 48, pp. 910–919.
Tummers, M. J., 1999, “Investigation of a Turbulent Wake in an Adverse Pressure Gradient Using Laser Doppler Anemometry,” Ph.D. thesis, Tech. Univ. Delft.
MacManus, Eaton, D. J., Barrett, R., Rickards, J., and Swales, C., 1996, “Mapping the Flow Field Induced by a HLFC Perforation Using a High Resolution LDV,” AIAA paper 96-0097.
Calabrese,  R. V., and Middleman,  S., 1979, “The Dispersion of Discrete Particles in a Turbulent Flow Field,” AIChE J., 25, No. 6, pp. 1025–1035.
Schwartz,  A. C., Plesniak,  M. W., and Murthy,  S. N. B., 1999, “Turbulent Boundary Layers Subjected to Multiple Strains,” ASME J. Fluids Eng., 121, pp. 526–532.
Bendat, J. S., and Piersol, A. G., 1986, Random Data Analysis and Measurement Procedures, Wiley, New York.
Orr, B., Thomson, E., and Budwig, R. S., 1997, “Drakeol 5 Thermophysical Property Measurements,” Mech. Engr. Dept. U. Idaho, Moscow, 18 Dec.
Lienhart, H., and Becker, S., 1994, “LDA-Untersuchungen zur Grenzschichttransition,” 9 DGLR-Fach-Symposium, Strömung mit Ablösung, DGLR—Bericht 94-04, Bonn, pp. 25–31.
Durst,  F., Jovanovic,  J., and Sender,  J., 1995, “LDA Measurements in the Near Wall Region of a Turbulent Pipe Flow,” J. Fluid Mech., 295, pp. 303–335.
Kays, W. M., 1966, Convective Heat and Mass Transfer, McGraw-Hill, New York.


Grahic Jump Location
Comparison of transition induced by a square rib (Durst et al. 10) to that by a circular wire (Schlichting 8)
Grahic Jump Location
Experimental apparatus, model configuration and nomenclature
Grahic Jump Location
Velocity distribution in the flat plate boundary layer without a roughness element
Grahic Jump Location
Evolution of flow over a two-dimensional square rib. (a) Rex,k≈6×104,k+≈11,k/δ1≈0.7,Rek≈318; (b) Rex,k≈1×105,k+≈16,k/δ1≈0.9,Rek≈529; (c) Rex,k≈1.4×105,k+≈21,k/δ1≈1,Rek≈741.
Grahic Jump Location
(a) Development of boundary layer and turbulence statistics for flow with “laminar recovery.” Results normalized by freestream velocity and rib height. (b) Development of boundary layer and turbulence statistics for flow with “laminar recovery.” Wall coordinates.
Grahic Jump Location
(a) Evolution of turbulent boundary layer. Results normalized by freestream velocity and rib height. (b) Evolution of turbulent boundary layer. Wall coordinates.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In