0
ADDITIONAL TECHNICAL PAPERS

MEMS-Micropumps: A Review

[+] Author and Article Information
Nam-Trung Nguyen, Xiaoyang Huang, Toh Kok Chuan

School of Mechanical and Production Engineering, Nanyang Technological University, Singapore 639798

J. Fluids Eng 124(2), 384-392 (May 28, 2002) (9 pages) doi:10.1115/1.1459075 History: Received August 07, 2000; Revised November 07, 2001; Online May 28, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.

References

System Planning Corporation, 1999, “MEMS 1999-Emerging Applications and Markets.”
Gravesen,  P., Brandebjerg,  J., and Jensen,  O. S., 1993, “Microfluidics-A Review,” J. Micromech. Microeng., 3, pp. 168–182.
Shoji,  S., and Esashi,  M., 1994, “Microflow Devices and Systems,” J. Micromech. Microeng., 4, pp. 157–171.
Ho,  C. M., and Tai,  Y. Ch., 1996, “Review: MEMS and Its Application for Flow Control,” ASME J. Fluids Eng., 118, pp. 437–447.
Elwenspoek,  M., Lammerink,  T. S., Miyake,  R., and Fluitman,  J. H. J., 1994, “Towards Integrated Microliquid Handling System,” J. Micromech. Microeng., 4, pp. 227–245.
Stemme, G., 1995, “Micro Fluid Sensors and Actuators,” Proc. 6. IEEE International Symposium on Micro Machine and Human Science, pp. 45–52.
Zengerle, R., and Sandmaier, H., 1996, “Microfluidics,” Proc. 7. IEEE International Symposium on Micro Machine and Human Science, pp. 13–20.
White, F. M., 1986, Fluid Mechanics. McGraw-Hill, New York.
van Lintel,  H. T. G., van den Pol,  F. C. M., and Bouwstra,  S., 1988, “A Piezoelectric Micropump Based on Micromachining in Silicon,” Sens. Actuators, 15, pp. 153–167.
van den Pol,  F. C. M., van Lintel,  H. T. G., Elwonspoek,  M., and Fluitman,  J. H. J., 1990, “A Thermopneumatic Micropump Based on Micro-Engineering Techniques,” Sens. Actuators A, 21–23, pp. 198–202.
Lammerink, T. S. J., Elwenspoek, M., and Fluitman, J. H. J., 1993, “Integrated Micro-Liquid Dosing System,” IEEE 6th Int. Workshop on MEM-MEMS’93, pp. 254–259.
Shoji,  S., Nakafawa,  S., and Esashi,  M., 1990, “Micropump and Sample-Injector for Integrated Chemical Analyzing Systems,” Sens. Actuators A, 21–23, pp. 189–192.
Zengerle, R., Richter, A., and Sandmaier, H., 1992, “A Micromembrane Pump With Electrostatic Actuation,” IEEE 5th Int. Workshop on MEMS-MEMS’92, pp. 31–36.
Zengerle, R., Kluge, S., Richter, M., and Richter, A., 1995, “A Bi-Directional Silicon Micropump,” IEEE 8th Int. Workshop on MEMS-MEMS’95, pp. 19–24.
Koch,  M., Harris,  N., Evans,  A. G. R., White,  N. M., and Brunnschweiler,  A., 1998, “A Novel Micromachined Pump Based on Thick-Film Piezoelectric Actuation,” Sens. Actuators A, 70, pp. 98–103.
Wang, X., Zhou, Z., Ye, Z., Li, Y., and Zhang, W., 1998, “A PZT-Driven Micropump,” Proc. of Micro Mechatronics and Human Sience 98, pp. 269–272.
Rapp,  R., Schomburg,  W. K., Maas,  D., Schulz,  J., and Stark,  W., 1994, “LIGA Micropump for Gases and Liquids,” Sens. Actuators A, 40, pp. 57–61.
Schomburg,  W. K., Fahrenberg,  J., Maas,  D., and Rapp,  R., 1993, “Active Valves and Pumps for Microfluidics,” J. Micromech. Microeng., 3, pp. 216–218.
Schomburg,  W. K., Vollmer,  J., Buestgens,  B., Fahrenberg,  J., Hein,  H., and Menz,  W., 1994, “Microfluidic Components in LIGA Technique,” J. Micromech. Microeng., 4, pp. 186–191.
Kaemper, K. P., Doepper, J., Ehrfeld, W., and Oberbeck, S., 1998, “A Self Filling Low Cost Membrane Micropump,” IEEE 11th Int. Workshop on MEMS (MEMS’98), pp. 432–437.
Boehm,  S., Olthuis,  W., and Bergveld,  P., 1999, “A Plastic Micropump Constructed With Conventional Techniques and Materials,” Sens. Actuators A, 77, pp. 223–228.
Meng, E., Wang, X. Q., Mak, H., and Tai, Y. C., 2000, “A Check-Valved Silicone Diaphragm Pump,” IEEE 13th International Conference on Micro Electro Mechanical Systems (MEMS’00), pp. 23–27.
Linneman, R., Woias, P., Senfft, C. D., and Ditterich, J. A., 1998, “A Self-Priming and Bubble Tolerant Piezoelectric Silicon Micropump for Liquids and Gases,” IEEE 11th Int. Workshop on MEMS-MEMS’98, pp. 532–537.
Richter,  M., Linnemann,  R., and Woias,  P., 1998, “Robust Design of Gas and Liquid Micropumps,” Sens. Actuators A, 68, pp. 480–486.
Maillefer, D., van Lintel, H., Rey-Mermet, G., and Hirschi, R., 1999, “A High-Performance Silicon Micropump for an Implantable Drug Delivery System,” IEEE 12th Int. Workshop on MEMS (MEMS’99), pp. 541–546.
Gass,  V., van der Shoot,  B. H., Jeanneret,  S., and de Rooij,  N. F., 1994, “Integrated Flow-Regulated Silicon Micropump,” Sens. Actuators A, 43, pp. 335–338.
Gass, V., van der Shoot, B. H., Jeanneret, S., and de Rooij, N. F., 1993, “Integrated Flow-Regulated Silicon Micropump,” Proc. of Inter. Conf. on Solid-State Sensors and Actuators Transducers’93, pp. 1048–1051.
Dario,  P., Croce,  N., Carrozza,  M. C., and Varallo,  G., 1996, “A Fluid Handling System for a Chemical Microanalyzer,” J. Micromech. Microeng., 6, pp. 95–98.
Guo, S., Nakamura, T., Fukuda, T., and Oguro, K., 1996, “Design and Experiments of Micro Pump Using ICPF Actuator,” Proc. of Micro Mechatronics and Human Science 96, pp. 235–240.
Guo, S., Hata, S., Sugumoto, K., Fukuda, T., and Oguro, K., 1998, “A New Type of Capsule Micropump Using ICPF Actuator,” Proc. of Micro Mechatronics and Human Science 98, pp. 255–260.
Accoto, D., Nedelcu, O. T., Carrozza, M. C., and Dario, P., 1998, “Theoretical Analysis and Experimental Testing of Miniature Piezoelectric Pump,” Proc. of Micro Mechatronics and Human Science 98, pp. 261–268.
Benard,  W. L., Kahn,  H., Heuer,  A. H., and Huff,  M. A., 1998, “Thin Film Shape-Memory Alloy Actuated Micropumps,” Journal of MEMS, 7, No. 2, pp. 245–251.
Li, H. Q., Roberts, D. C., Steyn, J. L., Turner, K. T., Carretero, J. A., Yaglioglu, O., Su, Y. H., Saggere, L., Hagood, N. W., Spearing, S. M., and Schmidt, M. A., 2000, “A High Frequency High Flow Rate Piezoelectrically Driven MEMS Micropump,” Tech. Dig. Solid-State Sensor and Actuator Workshop, Hilton Head, in print.
Smits,  J. G., 1988, “Piezoelectric Micropump With Three Valves Working Peristaltically,” Sens. Actuators, 15, pp. 153–167.
Shinohara, J., Suda, M., Furuta, K., and Sakuhara, T., 2000, “A High Pressure Resistance Micropump Using Active and Normally Closed Valves,” IEEE 13th Int. Workshop on MEMS (MEMS’00), pp. 86–91.
Judy, J. W., Tamagawa, T., and Polla, D. L., 1991, “Surface-Machined Micromechanical Membrane Pump,” IEEE 4th Int. Workshop on MEMS (MEMS’91), pp. 182–186.
Folta, J. A., Raley, N. F., and Hee, E. W., 1992, “Design Fabrication and Testing of a Miniature Peristaltic Membrane Pump,” Tech. Dig. Solid-State Sensor and Actuator Workshop, Hilton Head, pp. 186–189.
Mizoguchi, H., Ando, M., Mizuno, T., Takagi, T., and Nakajima, N., 1992, “Design and Fabrication of Light Driven Micropump,” IEEE 5th Int. Workshop on MEMS (MEMS’92), pp. 31–36.
Grosjean, C., and Tai, Y. C., 1999, “A Thermopneumatic Peristaltic Micropump,” Inter. Conf. on Solid-State Sensors and Actuators (Transducers ’99), pp. 1776–1779.
Cabuz, C., Cabuz, E. I., Herb, W. R., Rolfer, T., and Zook, D., 1999, “Measoscopic Sampler Based on 3D Array of Electrostatically Activated Diagphragms,” Inter. Conf. on Solid-State Sensors and Actuators (Transducers ’99), pp. 1890–1891.
Stemme,  E., and Stemme,  G., 1993, “A Valveless Diffuser/Nozzle-Based Fluid Pump,” Sens. Actuators A, 39, pp. 159–167.
Olsson,  A., Stemme,  G., and Stemme,  E., 1995, “A Valve-Less Planar Fluid Pump With Two Pump Chambers,” Sens. Actuators A, 46–47, pp. 549–556.
Olsson,  A., Enoksson,  P., Stemme,  G., and Stemme,  G., 1997, “Micromachined Flat-Walled Valve-Less Diffuser Pumps,” J. of MEMS, 6, No. 2, pp. 161–166.
Olsson,  A., Stemme,  G., and Stemme,  E., 1999, “A Numerical Design Study of the Valveless Diffuser Pump Using a Lumped-Mass Mode,” J. Micromech. Microeng., 10, pp. 34–44.
Gerlach,  T., Schoenemann,  M., and Wurmus,  H., 1995, “A New Micropump Principle of the Reciprocating Type Using Pyramidic Micro Flow Channels as Passive Valves,” J. Micromech. Microeng., 5, pp. 199–201.
Gerlach,  T., and Wurmus,  H., 1995, “Working Principle and Performance of the Dynamic Micropump,” Sens. Actuators A, 50, pp. 135–140.
Gerlach,  T., 1998, “Microdiffusers as Dynamic Passive Valves for Micropump Applications,” Sens. Actuators A, 69, pp. 181–191.
Jeong,  O. C., and Yang,  S. S., 2000, “Fabrication and Test of a Thermopneumatic Micropump With a Corrugated p+ Diaphragm,” Sens. Actuators A, 83, pp. 249–255.
Ullmann,  A., 1998, “The Piezoelectric Valve-Less Pump: Performance Enhancement Analysis,” Sens. Actuators A, 69, pp. 97–105.
Forster, F. K., Bardell, R. L., Afromowitz, M. A., Sharma, N. R., and Blanchard, A., 1995, “Design, Fabrication and Testing of Fixed-Valve Micro-Pumps,” Proc. of ASME Fluids Engineering Division, IMECE’95, Vol. 234, pp. 39–44.
Bardell, R. L., Sharma, N. R., Forster, F. K., Afromowitz, M. A., and Penney, R. J., 1997, “Designing High-Performance Micro-Pumps Based on No-Moving-Parts Valves,” Proc. of Microelectromechanical systems (MEMS) ASME, DSC-Vol. 62/HTD-Vol. 354, pp. 47–53.
Tesla, N., 1920, “Valvular Conduit,” US patent 1 329 559.
Stehr, M., Messner, S., Sandmaier, H., and Zengerle, R., 1996, “A New Micropump With Bidirectional Fluid Transport and Selfblocking Effect,” IEEE 9th Int. Workshop on MEMS (MEMS’96), pp. 485–490.
Stehr,  M., Messner,  S., Sandmaier,  H., and Zengerle,  R., 1996, “The VAMP-Anew Device for Handling Liquids or Gases,” Sens. Actuators A, 57, pp. 153–157.
Nguyen,  N. T., Schubert,  S., Richter,  S., and Dötzel,  W., 1998, “Hybrid-Assembled Micro Dosing System Using Silicon-Based Micropump/Valve and Mass Flow Sensor,” Sens. Actuators A, 69, pp. 85–91.
Matsumoto, S., Klein, A., and Maeda, R., 1999, “Development of Bi-Directional Valve-Less Micropump for Liquid,” Proc. of 12th Int. Workshop on MEMS (MEMS’99), pp. 141–146.
Ahn, C. H., and Allen, M. G., 1995, “Fluid Micropumps Based on Rotary Magnetic Actuators,” IEEE 8th Int. Workshop on MEMS (MEMS’95), pp. 408–412.
Doepper,  J., Clemens,  M., Ehrfeld,  W., Jung,  S., Kaemper,  K. P., and Lehr,  H., 1997, “Micro Gear Pumps for Dosing of Viscous Fluids,” J. Micromech. Microeng., 7, pp. 230–232.
Moroney, R. M., White, R. M., and Howe, R. T., “Ultrasonically Induced Microtransport,” IEEE 4th Int. Workshop on MEMS (MEMS’91), pp. 277–282.
Nguyen,  N. T., Meng,  A. H., Black,  J., and White,  R. M., 2000, “Integrated Flow Sensor for In Situ Measurement and Control of Acoustic Streaming in Flexural Plate Wave Micro Pumps,” Sens. Actuators A, 79, pp. 115–121.
Miyazaki, S., Kawai, T., and Araragi, M., 1991, “A Piezoelectric Pump Driven by a Flexural Progressive Wave,” IEEE 4th Int. Workshop on MEMS (MEMS’91), pp. 283–288.
Kurosawa, M., Watanabe, T., and Higuchi, T., “Surface Acoustic Wave Atomizer With Pumping Effect,” IEEE 8th Int. Workshop on MEMS (MEMS’95), pp. 25–30.
Bart,  S. F., Tavrow,  L. S., Mehregany,  M., and Lang,  J. H., 1990, “Microfabricated Electrohydrodynamic Pumps,” Sens. Actuators A, 21–23, pp. 193–197.
Fuhr, G., Hagedom, R., Mueller, T., Benecke, W., and Wagner, B., 1992, “Pumping of Water Solutions in Microfabricated Electrohydrodynamic Systems,” IEEE 5th Int. Workshop on MEMS (MEMS’92), pp. 25–30.
Fuhr, G., 1997, “From Micro Field Cages for Living Cells to Brownian Pumps for Submicron Particles,” Proc. of IEEE Micro Mechatronics and Human Science 97, pp. 1–4.
Fuhr,  G., Hagedorn,  R., Mueller,  T., Benecke,  W., and Wagner,  B., 1992, “Microfabricated Electrohydrodynamic (EHD) Pumps for Liquids of Higher Conductivity,” Journal of MEMS, 1, No. 3, pp. 141–145.
Fuhr,  G., Schnelle,  T., and Wagner,  B., 1994, “Travelling Wave-Driven Microfabricated Electrohydrodynamic Pumps for Liquids,” J. Micromech. Microeng., 4, pp. 217–226.
Ahn,  S. H., and Kim,  Y. K., 1998, “Fabrication and Experiment of a Planar Micro Ion Drag Pump,” Sens. Actuators A, 70, pp. 1–5.
Richter, A., and Sandmaier, H., 1990, “An Electrohydrodynamic Micropump,” IEEE 3rd Int. Workshop on MEMS (MEMS’90), pp. 99–104.
Richter,  A., Plettner,  A., Hofmann,  K. A., and Sandmaier,  H., 1991, “A Micromachined Electrohydrodynamic (EHD) Pump,” Sens. Actuators A, 29, pp. 159–168.
Furuya,  A., Shimokawa,  F., Matsuura,  T., and Sawada,  R., 1996, “Fabrication of Fluorinated Polyimide Microgrids Using Magnetically Controlled Reactive Ion Etching (MC-RIE) and Their Applications to an Ion Drag Integrated Micropump,” J. Micromech. Microeng., 6, pp. 310–319.
Harrison, D. J., Manz, A., and Glavina, P. G., 1991, “Electroosmotic Pumping Within a Chemical Sensor System Integrated on Silicon,” Proc. of Inter. Conf. on Solid-State Sensors and Actuators Transducers’91, pp. 792–795.
Harrison, D. J., Seiler, K., Manz, A., and Fan, Z., 1992, “Chemical Analysis and Electrophoresis Systems Integrated on Glass and Silicon Chips,” Tech. Dig. Solid-State Sensor and Actuator Workshop, Hilton Head, pp. 110–113.
Webster, J. R., Jones, D. K., and Mastrangelo, C. H., 1996, “Monolithic Capillary Gel Electrophoresis Stage With On-Chip Detector,” IEEE 9th Int. Workshop on MEMS (MEMS’96), pp. 491–496.
Webster, J. R., Burns, M. A., Burke, D. T., and Mastrangelo, C. H., 2000, “Electrophoresis System With Integrated On-Chip Fluorescence Detection,” IEEE 13th Int. Workshop on MEMS (MEMS’00), pp. 306–310.
Takagi, H., Maeda, R., Ozaki, K., Parameswaran, M., and Mehta, M., 1994, “Phase Transformation Type Micropump,” Proc. of Micro Mechatronics and Human Sciences 94, pp. 199–202.
Ozaki, K., 1995, “Pumping Mechanism Using Periodic Phase Changes of a Fluid,” IEEE 8th Int. Workshop on MEMS (MEMS’95), pp. 31–36.
Jun, T. K., and Kim, C. J., 1996, “Microscale Pumping With Traversing Bubbles in Microchannels,” Tech. Dig. Solid-State Sensor and Actuator Workshop, Hilton Head, pp. 144–147.
Jun,  T. K., and Kim,  C.-J., 1998, “Valveless Pumping Using Traversing Vapor Bubbles in Microchannels,” J. Appl. Phys., 83, No. 11, pp. 5658–5664.
Matsumoto, H., and Colgate, J. E., 1990, “Preliminary Investigation of Micropumping Based on Electrical Control of Interfacial Tension,” IEEE 3rd Int. Workshop on MEMS (MEMS’90), pp. 105–110.
Lee, J., and Kim, C. J., 1998, “Liquid Micromotor Driven by Continuous Electrowetting,” IEEE 11th Int. Workshop on MEMS (MEMS’98), pp. 538–543.
Boehm, S., Olthuis, W., and Bergveld, P., 2000, “A Bi-Directional Electrochemically Driven Micro Liquid Dosing System With Integrated Sensor/Actuator Electrodes,” IEEE 13th Int. Workshop on MEMS (MEMS’00), pp. 92–95.
Lemoff, A. V., Lee, A. P., Miles, R. R., and McConaghy, C. F., 1999, “An AC Magnetohydrodynamic Micropump: Tpwards a True Integrated Microfluidic System,” Int. Conf. on Solid-State Sensors and Actuators (Transducers ’99), pp. 1126–1129.
Lemoff,  A. V., and Lee,  A. P., 2000, “An AC Magnetohydrodynamic Micropump,” Sens. Actuators B, 63, pp. 178–185.
Maluf, N., 2000, An Introduction to Microelectromechanical Systems Engineering, Artech House, Boston, p. 95.

Figures

Grahic Jump Location
General structure of a micro check-valve pump
Grahic Jump Location
Check-valve micropumps: (a) piezoelectric actuator with ring mesa valves; (b) pneumatic actuator with polyimide disk valves; (c) pneumatic actuator with membrane valves; (d) pneumatic actuator with rubber membrane and parylene disk valves; (e) piezoelectric actuator with polysilicon disk valves; (f ) electrostatic actuator with silicon cantilever valves; (g) piezoelectric actuator silicon cantilever valves; (h, i, j) piezoelectric actuator with ring mesa valves.
Grahic Jump Location
Realization examples of peristaltic micropumps (not to scale): (a) piezoelectric actuators with glass membrane; (b) electrostatic actuators with polysilicon membrane; (c) thermopneumatic actuators with silicon membrane; (d) thermopneumatic actuators with silicon membrane and fiber guided laser as heat source; (e) thermopneumatic actuators with rubber membrane; (f ) electrostatic actuators with curved electrodes.
Grahic Jump Location
Realization examples of valveless rectification micro pumps (not to scale): (a) piezoelectric actuator with external diffuser/nozzle elements; (b) piezoelectric actuator with planar integrated diffuser/nozzle elements; (c) piezoelectric actuator with vertical diffuser/nozzle elements; (d) thermoelectric actuators with corrugated membrane and vertical diffuser/nozzle elements.
Grahic Jump Location
Principles of electrohydrodynamic pumps
Grahic Jump Location
Magnetohydrodynamic pump: (a) schematic of concept, (b) design example, fluid flows out of page plane
Grahic Jump Location
Flow rate versus typical size for mechanical pumps (the numbers indicate the corresponding references)
Grahic Jump Location
Flow rate versus typical size for non-mechanical pumps (the numbers indicate the corresponding references)
Grahic Jump Location
Maximum Reynolds number versus typical size
Grahic Jump Location
Pumped energy per stroke versus typical size (filled figures indicate that the pumps use piezoelectric actuators)
Grahic Jump Location
Maximum back pressure versus maximum flow rate (the numbers indicate the corresponding references)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In