Does the Minimum Fluidization Exist?

[+] Author and Article Information
Arnaud Delebarre

Ecole des Mines de Nantes, La Chantrerie, BP 20722, 44307 Nantes Cedex 3, France

J. Fluids Eng 124(3), 595-600 (Aug 19, 2002) (6 pages) doi:10.1115/1.1490377 History: Received December 08, 2000; Revised April 17, 2002; Online August 19, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Ergun,  S., 1952, “Fluid Flow Through Packed Columns,” Chem. Eng. Prog., 48(2), p. 89.
Forchheimer,  P. H., 1901, “Wasserbewegung Durch Boden,” Z. Ver. Deutsch. Ing., 45, p. 1781.
Geldart, D., 1986, Gas Fluidization Technology, D. Geldart, ed., Wiley, NY.
Bitaud, B., Regnier, M.-C., Picard, M., Delebarre, A., Leclerc, D., Dodds, J., and Thomas, D., 1995, “Etude du Transport et de la Capture de Fines Particules Dans un Milieu Granulaire: Application à l’injection de Charbon Dans le Haut Fourneau,” Le Génie des Procédés Complexes, Groupe Français de Génie des Procédés, Technique et Documentation-Lavoisier, Cachan, France, 9 (42), p. 177.
MacDonald,  I. F., El Sayed,  M. S., Mow,  K., and Dullien,  F. A. L., 1979, “Flow Through Porous Media-the Ergun Equation Revisited,” Ind. Engng Chem. Fundam., 18, p. 199.
Comiti,  J., and Renaud,  M., 1989, “A New Model for Determining Mean Structure Parameters of Fixed Beds From Pressure Drop Measurements: Application to Beds Packed With Parallelepipedal Particles,” Chem. Eng. Sci., 44, p. 1539.
Laguérie, C., 1988, “Techniques de Mise en Contact Entre Phases Solides et Gazeuses,” Traité Génie des Procédés, ed. Techniques de l’Ingénieur, J2 III, A 5850.
Kunii, D., and Levenspiel, O., 1991, Fluidization Engineering, Butterworth-Heinemann, eds., Boston.
Sutherland,  J. P., 1964, “The Measurement of Pressure Drop Across a Gas Fluidized Bed,” Chem. Eng. Sci., 19, p. 839.
Mathur, K. B., and Epstein, N., 1974, Spouted Beds, Academic Press, New York.
Wen,  C. Y., and Yu,  Y.-H., 1966, “A Generalized Method for Predicting the Minimum Fluidization Velocity,” AIChE J., 16, p. 610.
Jean,  R.-H., and Fan,  L.-S., 1992, “On the Model Equations of Gibilaro and Foscolo With Corrected Buoyancy Force,” Powder Technol., 72, p. 201.
Molodtsof,  Y., 1992, “Hydrodynamics and Heat Transfer to Vertically Flowing Gas-Solids Suspensions,” Kona, 10, p. 41.
Couderc, J.-P., 1985, Fluidization, J.-F. Davidson, R. Clift, and D. Harrison, ed., Academic Press, London.
Kusakabe,  K., Kuriyama,  T., and Morooka,  S., 1989, “Fluidization of Fine Particles at Reduced Pressure,” Powder Technol., 58, p. 201.
Grade, J. R., 1982, “Fluidized Beds Hydrodynamics,” Handbook of Multiphase Systems, G. Hestroni, ed, McGraw-Hill, New York.
Cranfield,  R. R., and Geldart,  D., 1974, Chem. Eng. Sci., 29, p. 935.
Denloye,  A. O., 1982, “Bed Expansion in a Fluidized Bed of Large Particles,” J. of Powder and Bulk Tech., 6(3), p. 11.
Thonglimp,  V., Hiquily,  N., and Laguérie,  C., 1984, “Vitesse Minimale de Fluidisation et Expansion Des Couches Fluidisées par un gaz,” Powder Technol., 38, p. 233.
Tannous,  K., Hemati,  M., and Laguérie,  C., 1994, “Caractéristiques de Fluidisation et Expansion des Couches Fluidisées de Particules de la Catégorie D de Geldart,” Powder Technol., 80, p. 55.
Rodriguez, R., Caussat, B., Hémati, M., and Couderc, J.-P., 1997, “Etude Hydrodynamique des Lits Fluidisés Sous vide et Sous Haute Température en vue de Réaliser des Dépo⁁ts CVD,” Proceedings du 2d Congrès Européen sur la Fluidisation, M. Olazar et M. J. San José, eds., Universidad del Pais Vasco, Bilbao, Espagne, p. 445.
Gauthier,  D., Zerguerras,  S., and Flamant,  G., 1999, “Influence of the Particle Size Distribution of Powders on the Velocities of Minimum and Complete Fluidization,” Chem. Eng. J., 74(3), p. 181.
Delebarre A., 1997, “Acquis et Lacunes d’une Innovation: le cas des Lits Fluidisés,” Mémoire d’Habilitation à Diriger des Recherches, Institut National Polytechnique de Lorraine.
Delebarre, A., 1997, “De la Particule à la Poudre,” Première Rencontre Autour des états Dispersés.


Grahic Jump Location
Calculated Umf(H) by Eq. (29) (open symbols) and measured Umf (black symbols and lines) for glass beads as a function of the weight of solids per unit area of bed cross-section (after 19 and 20)
Grahic Jump Location
Minimum fluidization velocity Umf(0) as a function of the Archimede number reported to gas pressure at the bed surface and the bed inventory per unit area of bed cross-section (after Eq. (29)).
Grahic Jump Location
Two series of three thought experiments for the determination of the minimum fluidization




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In