Numerical Simulation of Viscoplastic Fluid Flows Through an Axisymmetric Contraction

[+] Author and Article Information
Pascal Jay, Albert Magnin, Jean Michel Piau

Laboratoire de Rhéologie, BP 53, Domaine Universitaire, 38041 Grenoble Cedex 09, France

J. Fluids Eng 124(3), 700-705 (Aug 19, 2002) (6 pages) doi:10.1115/1.1486472 History: Received June 08, 2001; Revised March 20, 2002; Online August 19, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Prager, W., 1961, Introduction to Mechanics of Continua, Ginn, Boston.
Nguyen,  Q. D., and Boger,  D. V., 1992, “Measuring the Flow Properties of Yield Stress Fluids,” Annu. Rev. Fluid Mech., 24, pp. 47–88.
Wilson,  S. D. R., 1993, “Squeezing Flow of Bingham Material,” J. Fluid Mech., 47, pp. 211–219.
Piau,  J. M., 1996, “Flow of a Yield Stress Fluid in a Long Domain. Application to Flow on an Inclined Plane,” J. Rheol., 40, pp. 711–723.
Piau, J. M., 1998, “Crucial Elements of Yield Stress Fluid Rheology,” Dynamic Complex Fluids, Royal Society and Imperial Press, M. Adams, ed., pp. 353–374.
Barnes,  H. A., 1999, “The Yield Stress—a Review or παντα ρει—Everything Flows?” J. Non-Newtonian Fluid Mech., 81, pp. 133–178.
Coupez, T., Zine, M. A., and Agassant, J. F., 1994, “Numerical Simulation of Bingham Fluid Flow,” Proceedings of the 4th European Rheology Conference, Seville, pp. 341–343.
Isayev,  A. I., and Huang,  Y. H., 1993, “Two-Dimensional Planar Flow of a Viscoelastic Plastic Medium,” Rheol. Acta, 32, pp. 181–191.
Gans,  R. F., 1999, “On the Flow of a Yield Strength Fluid Through a Contraction,” J. Non-Newtonian Fluid Mech., 81, pp. 184–195.
Magnin, A., and Piau, J. M., 1992, “Flow of Yield Stress Fluids Through a Sudden Change of Section,” Theoretical and Applied Rheology, P. Moldenaers and R. Keunings, eds., Elsevier, Amsterdam pp. 195–197.
Mitsoulis,  E., Abdali,  S. S., and Markatos,  N. C., 1993, “Flow Simulation of Herschel-Bulkley Fluids Through Extrusion Dies,” Can. J. Chem. Eng., 71, pp. 147–160.
Abdali,  S. S., Mitsoulis,  E., and Markatos,  N. C., 1992, “Entry and Exit Flows of Bingham Fluids,” J. Rheol., 36, pp. 389–407.
Crochet, M. J., Davies, A. R., and Walters, K., 1984, “Numerical Simulation of Non-Newtonian Flows,” Elsevier, Amsterdam.
Papanastasiou,  T. C., 1987, “Flow of Material With Yield,” J. Rheol., 31, pp. 385–404.
Loest,  H., Lipp,  R., and Mitsoulis,  E., 1994, “Numerical Flow Simulation of Viscoplastic Slurries and Design Criteria for a Tape Casting Unit,” J. Am. Ceram. Soc., 77, pp. 254–262.
Beaulne,  M., and Mitsoulis,  E., 1997, “Creeping Motion of a Sphere in Tubes Filled With Herschel-Bulkley Fluids,” J. Non-Newtonian Fluid Mech., 72, pp. 55–71.
Burgos,  G. R., Alexandrou,  A. N., and Entov,  V., 1999, “On the Determination of Yield Surfaces in Herschel-Bulkley Fluids,” J. Rheol., 43, pp. 463–483.
Burgos,  G. R., and Alexandrou,  A. N., 1999, “Flow Development of Herschel-Bulkley Fluids in a Sudden Three-Dimensional Square Expansion,” J. Rheol., 43, pp. 485–498.
Alexandrou,  A. N., McGilvreay,  T. M., and Burgos,  G., 2001, “Steady Herschel-Bulkley Fluid Flow in Three-Dimensional Expansions,” J. Non-Newtonian Fluid Mech., 100, pp. 77–96.
Lipscomb,  G. G., and Denn,  M. M., 1984, “Flow of Bingham Fluids in Complex Geometries,” J. Non-Newtonian Fluid Mech., 14, pp. 337–346.
O’Donovan,  E. J., and Tanner,  R. I., 1984, “Numerical Study of the Bingham Squeeze Film Problem,” J. Non-Newtonian Fluid Mech., 15, pp. 75–83.
Vradis,  G. C., and Otugen,  M. V., 1997, “The Axisymmetric Sudden Expansion Flow of a Non-Newtonian Viscoplastic Fluid,” ASME J. Fluids Eng., 119, pp. 193–199.
Jay,  P., Magnin,  A., and Piau,  J. M., 2001, “Viscoplastic Fluid Flow Through a Sudden Axisymmetric Expansion,” AIChE J., 47(10), pp. 2155–2166.
Belhadri, M., Magnin, A., and Piau, J. M., 1994, Actes du 8éme Colloque TIFAN, Toulouse, 7, pp. 29–38.
Magnin,  A., and Piau,  J. M., 1990, “Cone Plate Rheometry of a Yield Stress Fluid. Measurement of an Aqueous Gel,” J. Non-Newtonian Fluid Mech., 36, pp. 85–108.
Kim-E,  M. E., Brown,  R. A., and Armstrong,  R. C., 1983, “The Roles of Inertia and Shear Thinning in Flow of Inelastic Liquid Through an Axisymmetric Contraction,” J. Non-Newtonian Fluid Mech., 13, pp. 41–63.
Nguyen,  H., and Boger,  D. V., 1979, “The Kinematics and Stability of Die Entry Flows,” J. Non-Newtonian Fluid Mech., 5, pp. 353–368.
Boger,  D. V., 1987, “Viscoelastic Flows Through Contractions,” Annu. Rev. Fluid Mech., 19, pp. 157–182.


Grahic Jump Location
Domain of the flow. Definition of R1, R2, L1, L2, α, H, and H1.
Grahic Jump Location
Example of 3 meshes. Case of the 4:1 contraction ratio. (a) Contraction angle=20 deg 4247 nodes; (b) contraction angle=60 deg 5557 nodes; (c) contraction angle=90 deg 7123 nodes.
Grahic Jump Location
Influence of Bi on the overall structure of the flow. Rigid static zone in black. Rigid moving zone hatched. n=1.
Grahic Jump Location
Change in flow in relation to the Bi number. Zoom on the corner. n=1.
Grahic Jump Location
Influence of contraction angle on flow structure for a 4:1 contraction ratio and Bi=10.n=1.
Grahic Jump Location
Map showing the appearance of the vortex and rigid static zone. 4:1 contraction ratio. n=1.
Grahic Jump Location
Influence of contraction ratio on flow structure. Bi=10.α=90 deg.n=1.
Grahic Jump Location
Leq versus Bi number for different contraction angles. 4:1 contraction ratio. n=1. Newtonian limit for α=90 deg:Leq=0.55.
Grahic Jump Location
Leq versus contraction angle for different Bi numbers. 4:1 contraction ratio. n=1.
Grahic Jump Location
Leq versus contraction ratio for different Bi numbers. α=90 deg.n=1.
Grahic Jump Location
Comparison of numerical and experimental results




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In