Sagaut, P., 2001, *Large Eddy Simulation for Incompressible Flows*, Springer-Verlag, Heidelberg.

Lesieur,
M., and Metais,
O., 1996, “New Trends in Large Eddy Simulations of Turbulence,” Annu. Rev. Fluid Mech., 28, p. 45.

Fureby,
C., Tabor,
G., Weller,
H., and Gosman,
D., 1997, “A Comparative Study of Sub Grid Scale Models in Homogeneous Isotropic Turbulence,” Phys. Fluids, 9, p. 1416.

Metais,
O., and Lesieur,
M., 1992, “Spectral Large Eddy Simulation of Isotropic and Stably Stratified Turbulence,” J. Fluid Mech., 239, p. 157.

McComb, W. D., 1994, *The Physics of Fluid Turbulence*, Clarendon Press, Oxford.

Kuo,
A. Y., and Corrsin,
S., 1971, “Experiment on the Geometry of the Fine-Structure Regions in Fully Developed Turbulent Fluid,” J. Fluid Mech., 56, p. 447.

Sigga,
E. D., and Patterson,
G. S., 1988, “Intermittency Effects in a Numerical Simulation of Stationary Three Dimensional Turbulence,” J. Fluid Mech., 86, p. 567.

Jimenez,
J., Wray,
A., Saffman,
P., and Rogallo,
R., 1993, “The Structure of Intense Vorticity in Isotropic Turbulence,” J. Fluid Mech., 255, p. 65.

Vincent,
A., and Meneguzzi,
M., 1994, “The Spatial Structure and Statistical Properties of Homogeneous Turbulence,” J. Fluid Mech., 225, p. 1.

Kerr,
R. M., 1985, “Higher Order Derivative Correlation and the Alignment of Small Scale Structures in Numerical Turbulence,” J. Fluid Mech., 153, p. 31.

Ashurst,
W. T., Kerstein,
A. R., Kerr,
R. M., and Gibson,
C. H., 1987, “Alignment of Vorticity of Scalar Gradients With Strain Rate in Simulated Navier Stokes Turbulence,” Phys. Fluids, 30, p. 2343.

Misra,
A., and Pullin,
D. I., 1997, “A Vortex Based Subgrid Stress Model for Large Eddy Simulation,” Phys. Fluids, 9, p. 2443.

Bagget, J. S., Jiménez, J., and Kravchenko, A. G., 1997, “Resolution Requirements in Large Eddy Simulations of Shear Flows,” Ann. Res. Briefs, CTR, NASA Ames/Stanford University, p. 55.

Jimenez, J., 1998, private communication; see also AIAA 98-2891.

Boris,
J. P., and Book,
D. L., 1973, “Flux Corrected Transport I, SHASTA, a Fluid Transport Algorithm That Works,” J. Comput. Phys., 11, p. 38.

Colella,
P., and Woodward,
P., 1984, “The Piecewise Parabolic Method (PPM) for Gas Dynamic Simulations,” J. Comput. Phys., 54, p. 174.

Sytine,
I. V., Porter,
D. H., Woodward,
P. R., and Hodson,
S. W., 2000, “Convergence Tests for the Piecewise Parabolic Method and Navier-Stokes Solutions for Homogeneous Compressible Turbulence,” J. Comput. Phys., 158, p. 225.

Garnier,
E., Mossi,
M., Sagaut,
P., Comte,
P., and Deville,
M., 2000, “On the Use of Shock-Capturing Schemes for Large Eddy Simulation,” J. Comput. Phys., 153, p. 273.

Okong’o,
N., Knight,
D. D., and Zhou,
G., 2000, “Large Eddy Simulations Using an Unstructured Grid Compressible Navier-Stokes Algorithm,” Int. J. Comput. Fluid Dyn., 13, p. 303.

Margolin,
L. G., Smolarkiewicz,
P. K., and Sorbjan,
Z., 1999, “Large-Eddy Simulation of Convective Boundary Layers Using Non-Oscillatory Differencing,” Physica D, 133, p. 390.

Karamanos,
G.-S., and Karniadakis,
G. E., 2000, “A Spectral Vanishing Viscosity Method for Large-Eddy Simulations,” J. Comput. Phys., 163, p. 22.

Boris,
J. P., Grinstein,
F. F., Oran,
E. S., and Kolbe,
R. J., 1992, “New Insights Into Large Eddy Simulation,” Fluid Dyn. Res., 10, p. 199.

Fureby,
C., and Grinstein,
F. F., 1999, “Monotonically Integrated Large Eddy Simulation of Free Shear Flows,” AIAA J., 37, p. 544.

Fureby,
C., and Grinstein,
F. F., 2002, “Large Eddy Simulation of High Reynolds Number Free and Wall Bounded Flows,” J. Comput. Phys., 181, p. 68.

Ferziger, J. H., and Leslie, D. C., 1979, “Large Eddy Simulation—A Predictive Approach to Turbulent Flow Computation,” AIAA paper 79-1441.

Fureby,
C., and Tabor,
G., 1997, “Mathematical and Physical Constraints on Large Eddy Simulations,” J. Theoretical Fluid Dyn., 9 , p. 85.

Speziale,
C. G., 1985, “Galilean Invariance of Sub Grid Scale Stress Models in Large Eddy Simulations of Turbulence,” J. Fluid Mech., 156, p. 55.

Vreman,
B., Geurts,
B., and Kuerten,
H., 1994, “Realizability Conditions for the Turbulent Stress Tensor in Large Eddy Simulation,” J. Fluid Mech., 278, p. 351.

Ghosal,
S., and Moin,
P., 1995, “The Basic Equations for the Large Eddy Simulation of Turbulent Flows in Complex Geometry,” J. Comput. Phys., 118, p. 24.

Lesieur,
M., and Metais,
O., 1996, “New Trends in Large Eddy Simulations of Turbulence,” Annu. Rev. Fluid Mech., 28, p. 45.

Sullivan,
P. P., McWilliams,
J. C., and Moeng,
C. H., 1994, “A Subgrid Scale Model for Large Eddy Simulation of Planetary Boundary-Layer Flows,” Bound. Layer Meth., 71, p. 247.

Fureby, C., 2001, “Towards Large Eddy Simulation of Complex Flows,” *Direct and Large Eddy Simulation IV*, R. Friedrich and W. Rodi, eds., Kluwer, Dordrecht, The Netherlands.

Lund, T. S., and Novikov, E. A., 1994, “Parameterization of Subgrid-Scale Stress by the Velocity Gradient Tensor,” Annual Res. Briefs, Center for Turbulence Research, p. 185.

Deardorff,
J. W., 1973, “The Use of Subgrid Transport Equations in a Three-Dimensional Model of Atmospherical Turbulence,” ASME J. Fluids Eng., 95, p. 429.

Bardina, J., Ferziger, J. H., and Reynolds, W. C., 1980, “Improved Subgrid Scale Models for Large Eddy Simulations,” AIAA Paper No. 80-1357.

Liu,
S., Meneveau,
C., and Katz,
J., 1994, “On the Properties of Similarity Subgridscale Models as Deduced From Measurements in a Turbulent Jet,” J. Fluid Mech., 275, p. 83.

Hirsch, C., 1999, *Numerical Computation of Internal and External Flows*, John Wiley and Sons, New York.

Fureby,
C., Tabor,
G., Weller,
H., and Gosman,
D., 1997, “A Comparative Study of Sub Grid Scale Models in Homogeneous Isotropic Turbulence,” Phys. Fluids, 9, p. 1416.

Godunov,
S. K., 1959, “A Difference Method for Numerical Calculation of Discontinuous Solutions of the Equations of Hydrodynamics,” Mat. Sb., 47, p. 271.

LeVeque, R. J., 1992, *Numerical Methods for Conservation Laws*, 2nd Ed., Birkhüser Verlag, Berlin.

Shao,
L., Sarkar,
S., and Pantano,
C., 1999, “On the Relationship Between the Mean Flow and Subgrid Stresses in Large Eddy Simulation of Turbulent Shear Flows,” Phys. Fluids, 11, p. 1229.

Borue,
V., and Orszag,
S. A., 1998, “Local Energy Flux and Subgrid-Scale Statistics in Three Dimensional Turbulence,” J. Fluid Mech., 366, p. 1.

Margolin,
L. G., and Rider,
W. J., 2002, “A Rationale for Implicit Turbulence Modeling,” Intl. J. Numer. Meth. Fluids, 39, p. 821.

Harten,
A., 1984, “On a Class of High Resolution Total Variation Stable Finite Difference Schemes,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal., 21, p. 1.

Sweby,
P. K., 1984, “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal., 21, p. 995.

Roe, P. L., 1985, *Some Contributions to the Modelling of Discontinuous Flows* (Lectures in Applied Mathematics), Springer-Verlag, Heidelberg, 22 , p. 163.

Jasak,
H., Weller,
H. G., and Gosman,
A. D., 1999, “High Resolution NVD Differencing Scheme for Arbitrarily Unstructured Meshes,” Int. J. Numer. Methods Fluids, 31, p. 431.

Sandham, N. D., and Howard, R. J. A., 1995, “Statistics Databases From Direct Numerical Simulation of Fully-Developed Turbulent Channel Flow,” private communication, QMW-EP-1106, Queen Mary and Westfield College, Department of Engineering, London.

Grinstein,
F. F. , 1996, “Streamwise and Spanwise Vortex Interaction in an Axisymmetric Jet. A Computational and Experimental Study,” Phys. Fluids, 8, p. 1515.

Grinstein,
F. F., 2001, “Vortex Dynamics and Entrainment in Regular Free Jets,” J. Fluid Mech., 437, p. 69.

Grinstein, F. F., 1998, “Vortex Dynamics and Aeroacoustics of Low Aspect Ratio Rectangular Jets,” *Proc. AFOSR Conference on Turbulence and Internal Flows*, Annapolis, MD, Aug. 18–20, AFOSR, Washsington, DC, p. 131.

Grinstein,
F. F., and DeVore,
C. R., 2002, “On Global Instabilities in Countercurrent Jets,” Phys. Fluids, 14, p. 1095.

Hussain,
F., and Husain,
H. S., 1989, “Elliptic Jets. Part I. Characteristics of Unexcited and Excited Jets,” J. Fluid Mech., 208, p. 257.

Tam, C., 1998, “LES for Aeroacoustics,” AIAA Paper 98-2805.

Brown,
G., and Roshko,
A., 1974, “On Density Effects and Large Structure in Turbulent Mixing Layers,” J. Fluid Mech., 64, p. 775.

Mitchell,
B. E., Lele,
S. K., and Moin,
P., 1999, “Direct Computation of the Sound Generated by Vortex Pairing in an Axisymmetric Jet,” J. Fluid Mech., 383, p. 113.

Grinstein,
F. F., Oran,
E. S., and Boris,
J. P., 1991, “Pressure Field, Feedback and Global Instabilities of Subsonic Spatially Developing Mixing Layers,” Phys. Fluids A, A3, p. 2401.

Bridges,
J., and Hussain,
F., 1992, “Direct Evaluation of Aeroacoustic Theory in a Jet,” J. Fluid Mech., 240, p. 469.

Tam,
C. K. W., and Webb,
J. C., 1993, “Dispersion Related Preserving Finite Difference Schemes for Computational Aeroacoustics,” J. Comput. Phys., 107, p. 1262.

Germano,
M., Piomelli,
U., Moin,
P., and Cabot,
W. H., 1994, “A Dynamic Sub Grid Scale Eddy Viscosity Model,” Phys. Fluids A, A3, p. 1760.

Voke,
P., 1996, “Subgrid-Scale Modeling at Low Mesh Reynolds Number,” J. Theoret. Fluid Dyn., 8 , p. 131.

Sagaut,
P., 1996, “Numerical Simulations of Separated Flows With Subgrid Models,” Rech. Aerosp., 1, p. 51.

Grötzbach, G., 1987, “Direct Numerical and large Eddy Simulation of Turbulent Channel Flows,” *Encyclopedia of Fluid Mechanics*, N. P. Cheremisinoff, ed., 34 , Gulf Publishing, Houston, p. 1337.

Piomelli,
U., Ferziger,
J., and Moin,
P., 1981, “New Approximate Boundary Conditions for Large Eddy Simulations of Wall Bounded Flows,” Phys. Fluids, 1, p. 1061.

Cabot,
W., and Moin,
P., 2000, “Approximate Wall Boundary Conditions in the Large Eddy Simulation of High Reynolds Number Flows,” Flow, Turbul. Combust., 63, p. 269.

Menon, S., 2001, private communication.

Fureby, C., Persson, L., and Svanstedt, N., 2002, “On Homogenization Based Methods for Large Eddy Simulation,” AIAA Paper No 02-7462; J. Fluids Engineering, in press.

Antonia,
R. A., Teitel,
M., Kim,
J., and Browne,
L. W. B., 1992, “Low-Reynolds-Number Effects in a Fully Developed Turbulent Channel Flow,” J. Fluid Mech., 236, p. 579.

Wei,
T., and Willmarth,
W. W., 1989, “Reynolds Number Effects on the Structure of a Turbulent Channel Flow,” J. Fluid Mech., 204, p. 57.

Dean,
R. B., 1978, “Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-Dimensional Rectangular Duct Flow,” ASME J. Fluids Eng., 100, p. 215.

Smith, C. R., and Walker, J. D. A., 1995, “Turbulent Wall-Layer Vortices,” *Fluid Vortices*, S. Green ed., Kluwer, Dordrecht, The Netherlands.

Blackwelder,
R. F., 1979, “Boundary Layer Transition,” Phys. Fluids, 22, p. 583.

Jeong,
J., Hussain,
F., Shoppa,
W., and Kim,
J., 1997, “Coherent Structures Near the Wall in a Turbulent Channel Flow,” J. Fluid Mech., 332, p. 185.

Moin,
P., and Kim,
J., 1982, “Large Eddy Simulation of Turbulent Channel Flow,” J. Fluid Mech., 118, p. 341.

Comte-Bellot, G., 1965, “Ecoulment Turbulent Entre Deaux Parois Paralleles,” Publications Scientifiques et Techniques du Ministere de l’Air No. 419.

Author please insert Ref.

76Colonius,
T., Lele,
S. K., and Moin,
P., 1993, “Boundary Conditions for Direct Computations of Aerodynamic Sound,” AIAA J., 31, p. 1574.

Poinsot,
T. J., and Lele,
S. K., 1994, “Boundary Conditions for Direct Simulations of Compressible Viscous Flows,” J. Comput. Phys., 101, p. 104.

Grinstein,
F. F., 1994, “Open Boundary Conditions in the Simulation of Subsonic Turbulent Shear Flows,” J. Comput. Phys., 115, p. 43.

Turkel,
E., 1998, “Special Issue on Absorbing Boundary Conditions,” Appl. Numer. Math., 27, p. 327.

Kong,
H., Choi,
H., and Lee,
J. S., 2000, “Direct Numerical Simulation of Turbulent Thermal Boundary Layers,” Phys. Fluids, 12, p. 2555.

Strikwerda,
J. C., 1977, “Initial Value Boundary Value Problems for Incompletely Parabolic Systems,” Commun. Pure Appl. Math., 30, p. 797.

Thompson,
K., 1987, “Time Dependent Boundary Conditions for Hyperbolic Systems,” J. Comput. Phys., 68, p. 1.

Thompson,
K., 1990, “Time Dependent Boundary Conditions for Hyperbolic Systems, II,” J. Comput. Phys., 89, p. 439.

Pitz,
R. W., and Daily,
J. W., 1983, “Experimental Study of Combustion in a Turbulent Free Shear Layer Formed at a Rearward Facing Step,” AIAA J., 21, p. 1565.

Pitz, R. W., and Daily, J. W., 1981, “Experimental Study of Combustion: The Turbulent Structure of a Reacting Shear Layer Formed at a Rearward Facing Step,” NASA Contractor Report 165427.

Fureby,
C., 1999, “Large Eddy Simulation of Rearward Facing Step Flow,” AIAA J., 37, p. 1401.

Eaton, J. K., and Johnston, J. P., 1980, “Turbulent Flow Reattachment: An Experimental Study of the Flow and Structure Behind a Backward Facing Step,” Stanford University, Report No. MD-39.