Porter,
D. H., Pouquet,
A., and Woodward,
P. R., 1994, “Kolmogorov-Like Spectra in Decaying Three-Dimensional Supersonic Flows,” Phys. Fluids, 6(6), pp. 2133–2142.

Fureby,
C., and Grinstein,
F. F., 1999, “Monotonically Integrated Large Eddy Simulation of Free Shear Flows,” AIAA J., 37(5), pp. 544–556.

Urbin, G., and Knight, D., 1999, “Large Eddy Simulation of the Interaction of a Turbulent Boundary Layer With a Shock Wave Using Unstructured Grids,” Second AFSOR International Conference on DNS and LES, Rutgers, NJ.

Fureby, C., and Grinstein, F. F., 2000, “Large Eddy Simulation of High Reynolds Number Free and Wall Bounded Flows,” AIAA Paper No. 2000-2307.

LeVeque, R. J., 1992, *Numerical Methods for Conservation Laws*, 2nd Ed., Birtkhuser Verlag, Berlin.

Giannakouros,
I. G., and Karniadakis,
G. E., 1994, “A Spectral Element-FCT Method for the Compressible Euler Equations,” J. Comput. Phys., 115(1), pp. 65–85.

Oran, E. S., and Boris, J. P., 1987, *Numerical Simulation of Reactive Flow*, Elsevier, New York.

Margolin, L. G., Smolarkiewicz, P. K., and Wyszogrodzki, A. A., 2002, “Implicit Turbulence Modeling for High Reynolds Number Flows,” AIAA Paper No. 2002-1129, 40th AIAA Aerospace Sciences Meeting, Reno, NV.

Boris,
J. P., Grinstein,
F. F., Oran,
E. S., and Kolbe,
R. J., 1992, “New Insights in Large Eddy Simulations,” Fluid Dyn. Res., 10, pp. 199.

Lax, P. D., 1972, “Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves,” ABMS-NSF Regional Conference Series in Applied Mathematics, Vol. 11 , Society for Industrial and Applied Mathematics, Philadelphia, PA.

Godunov,
S. K., 1959, “A Difference Method for Numerical Calculation of Discontinuous Solutions of the Equations of Hydrodynamics,” Mat. Sb., 47, p. 271.

Tadmor,
E., 1989, “Convergence of Spectral Methods for Nonlinear Conservation Laws,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal., 26(1), pp. 30–44.

Guo,
B.-Y., Ma,
H.-P., and Tadmor,
E., 2001, “Spectral Vanishing Viscosity Method for Nonlinear Conservation Laws,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal., 39(4), pp. 1254–1268.

Hughes, T. J. R., Mazzei, L., and Jansen, K. E., 1999, “Large Eddy Simulation and the Variational Multiscale Methods,” Comput Visual. Sci., submitted for publication.

Dubois,
T., Jauberteau,
F., and Temam,
R., 1993, “Solution of the Incompressible Navier-Stokes Equations by the Nonlinear Galerkin Method,” J. Sci. Comput., 8, p. 167.

Karamanos,
G.-S., and Karniadakis,
G. E., 2000, “A Spectral Vanishing Viscosity Method for Large-Eddy Simulations,” J. Comput. Phys., 163(1), pp. 22–50.

Karniadakis, G. E., and Sherwin, S. J., 1999, *Spectral/hp Element Methods for CFD*, Oxford University Press, Oxford, UK.

Don,
W. S., 1994, “Numerical Study of Pseudospectral Methods in Shock Wave Applications,” J. Comput. Phys., 110(1), pp. 103–111.

Crandall,
M. G., and Lions,
P. L., 1983, “Viscosity Solutions of Hamilton-Jacobi Equations,” Trans. Am. Math. Soc., 61, p. 629.

Maday,
Y., Ould Kaber,
S. M., and Tadmor,
E., 1993, “Legendre Pseudospectral Viscosity Method for Nonlinear Conservation Laws,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal., 30(2), pp. 321–342.

Tadmor,
E., 1993, “Total Variation and Error Estimates for Spectral Viscosity Approximations,” Math. Comput., 60, pp. 245–266.

Lesieur,
M., and Metais,
O., 1996, “New Trends in Large-Eddy Simulation,” Annu. Rev. Fluid Mech., 28, pp. 45–82.

Kraichnan,
R. H., 1976, “Eddy Viscosity in Two and Three Dimensions,” J. Atmos. Sci., 33, p. 1521.

Chollet, J. P., 1984, “Two-Point Closures as a Subgrid Scale Modeling for Large Eddy Simulations,” *Turbulent Shear Flows IV* (Lecture Notes in Physics) F. Durst and B. Launder, eds. Springer-Verlag, New York.

Kirby, R. M., 2002, “Toward Dynamic Spectral/hp Refinement: Algorithms and Applications to Flow-Structure Interactions,” Ph.D. thesis, Division of Applied Mathematics, Brown University, Providence, RI.

Panton,
R. L., 1997, “A Reynolds Stress Function for Wall Layers,” ASME J. Fluids Eng., 119(2), pp. 325–330.

Kim,
J., Moin,
P., and Moser,
R., 1987, “Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number,” J. Fluid Mech., 117, p. 133.