Cavitation in Hydraulic Tools Based on Thermodynamic Properties of Liquid and Gas

[+] Author and Article Information
U. Iben, F. Wrona, M. Beck

Robert Bosch GmbH, Department FV/FLM, P. Box 106050, D-70059 Stuttgart, Germany

C.-D. Munz

Institute for Aerodynamics and Gasdynamics, Stuttgart University, Pfaffenwaldring 21, D-70550, Stuttgart, Germany

J. Fluids Eng 124(4), 1011-1017 (Dec 04, 2002) (7 pages) doi:10.1115/1.1514200 History: Received July 10, 2001; Revised May 06, 2002; Online December 04, 2002
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Hapke, T., and Iben, H.-K., 1998, “Kavitationsmodellierung bei eindimensional Str ‘omungsvorg’ angen,” Motortech. Z.
Huhn, J., and Wolf, J., 1975, Zweiphasenströmung, VEB Fachbuchverlag Leipzig.
Nguyen-Schaefer, H., and Sprafke, H., 1998, “Numerical Study on Interaction Effects of Bubbles Induced by Air-Release and Cavitation in Hydraulic Systems,” Tenth Bath International Fluid Power Workshop, Research Studies Press, John Wiley and Sons, New York.
Sprafke, P., 1999, “Numerische und experimentelle Untersuchungen des dynamischen Verhaltens hydraulischer Systeme unter Berücksichtigung von Kavitation und Luftausgasung,” Ph.D. thesis, University Karlsruhe.
Baur, T., 1997, “Auswirkungen der Diffusion gelöster Gase auf das Wachstum von Kavitationsblasen,” Ph.D. thesis, RWTH Aachen, Institut für Wasserbau und Wasserwirtschaft.
Regner, G., 1999, “Blasendynamisches Kavitationsmodell für eine eindimensionale Strömungssimulation,” Ph.D. thesis, Technical University Graz.
Wallis, W., 1975, One dimensional Two-Phase Flow, McGraw-Hill, New York.
Kolev, N. I., 1986, Transiente Zweiphasen-Strömung, Springer-Verlag, Berlin.
Beck, M., Iben, U., Mittwollen, N., Iben, H.-K., and Munz, C.-D., 2001, “On Solution of Conservation Equations in Cavitated Hydraulic Pipelines,” 3rd International Symposium on Computational Technologies for Fluid/Thermal/Chemical Systems with Industrial Applications, July 22–26, Atlanta, GA.
Beck, M., 2002, “Kavitation in Diesel-Einspritzsystemen,” Ph.D. thesis, University Magdeburg and Robert Bosch GmbH, in preparation.
Wrona, F., 2001, “Numerische Umsetzung von homogenen Kavitationsmodellen,” Master’s thesis, University Stuttgart.
Iben, U., 2001, “Entwicklung und Untersuchung von Kavitationsmodellen im Zusammenhang mit transienten Leitungsströmungen,” in preparation.
Fox, R., and McDonalds, A., 1994, Introduction to Fluid Mechanics, John Wiley and Sons, New York.
Lahey, T., and Wallis, G., 1975, “Non-equilibrium Two-Phase Flow,” Presented at the ASME Winter Annual Meeting, Nov. 30–Dec. 5, Houston, http://www.addall.com/Browse/Detail/0317080873.html.
Hapke, I., 1995, “Theoretische und Numerische Untersuchungen an Kavitationsmodellen,” Master’s thesis, Universität Magdeburg, ISUT.
Toro, E. F., 1997, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, New York.
Einfeldt,  B., Munz,  C.-D., Roe,  P. L., and Sjögreen,  B., 1991, “On Godunov-Type Methods Near Low Densities,” J. Comput. Phys., 92, pp. 273–295.
Harten,  A., Lax,  P., and van Leer,  B., 1983, “On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws,” SIAM Rev., 25, pp. 35–62.
Iben, U., 2000, “Cavitation modeling,” Analysis, Modeling and Simulation, Gordon and Breach, London.
Iben, H.-K., and Schmidt, J., 1999, Starthife Thermodynamik, Teubner Verlag.
Yorizane, M., and Masuoka, H., 1969, “Equations of State at High Pressure From Standpoint of Gas-Liquid Equilibria,” Int. Chem. Eng., 9 (3).
Wagner, W., Span, S., and Bonsen, T., 1999, Wasser und Wasserdampf, Springer-Verlag, New York.
Baehr, H. D., and Stephan, K., 1994, Wärme- und Stoffübergang, Springer-Verlag, New York.
van Wijngaarden, L., 1976, “Hydrodynamic Interaction Between Gas Bubbles in Liquid,” J. Fluid Mech., pp. 27–44.


Grahic Jump Location
Comparison of the pressure and velocity distribution for a Riemann problem with pL=100 bar and pR=−0.15 bar at t=0 s, with 9 and an exact solution
Grahic Jump Location
Pressure distribution and mass fraction for different temperatures at t=100 μs
Grahic Jump Location
Volume fraction and velocity distribution for four different temperatures at t=100 μs
Grahic Jump Location
Pressure distribution and mass fraction for different initial pressure at t=250 μs
Grahic Jump Location
Volume fraction and velocity distribution for different initial pressure at t=250 μs
Grahic Jump Location
Pressure and volume fraction distribution for the fifth case of Table 2 at t=750 μs




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In