Ghia,
U., Ghia,
K. N., and Shin,
C. T., 1982, “High-Re Solutions for Incompressible Flow Using Navier-Stokes Equations and a Multigrid Method,” J. Comput. Phys., 48, pp. 387–411.

Iwatsu,
R., Hyun,
J. M., and Kuwahara,
K., 1990, “Analyses of Three Dimensional Flow Calculations in a Driven Cavity,” Fluid Dyn. Res., 6, pp. 91–102.

Iwatsu,
R., Ishii,
K., Kawamura,
T., Kuwahara,
K., and Hyun,
J. M., 1989, “Numerical Simulation of Three-Dimensional Flow Structure in a Driven Cavity,” Fluid Dyn. Res., 5, pp. 173–189.

Nishida,
H., and Satofuka,
N., 1992, “Higher Order Solutions of Square Driven Cavity Flow Using Variable-Order Multigrid Method,” Int. J. Numer. Methods Fluids, 34, pp. 637–653. 5.

Koseff, J. R., Street, R. L., Gresho, P. M., Upson, C. D., Humphrey, J. A. C., and To, W. M., 1983, “A Three Dimensional Lid Driven Cavity Flow: Experiment and Simulation,” *Proceedings of the Third International Conference on Numerical Methods in Laminar and Turbulent Flow*, C. Taylor, ed., Seattle, WA, pp. 564–581.

Freitas,
C. J., Street,
R. L., Findikakis,
A. N., and Koseff,
J. R., 1985, “Numerical Simulation of Three Dimensional Flow in a Cavity,” Int. J. Numer. Methods Fluids, 5, pp. 561–575.

Kim,
J., and Moin,
P., 1985, “Application of Fractional Step Method to Incompressible Navier-Stokes Equations,” J. Comput. Phys., 59, pp. 308–323.

Freitas,
C. J., and Street,
R. L., 1988, “Nonlinear Transient Phenomena in Complex Recirculating Flow: A Numerical Investigation,” Int. J. Numer. Methods Fluids, 8, pp. 769–802.

Koseff,
J. R., and Street,
R. L., 1984, “Visualization Studies of a Shear Driven Three Dimensional Recirculating Flow,” ASME J. Fluids Eng., 106, pp. 21–29.

Koseff,
J. R., and Street,
R. L., 1984, “On End Wall Effects in Lid Driven Cavity Flow,” ASME J. Fluids Eng., 106, pp. 385–389.

Koseff,
J. R., and Street,
R. L., 1984, “The Lid Driven Cavity Flow: A Synthesis of Qualitative and Quantitative Observations,” ASME J. Fluids Eng., 106, pp. 390–398.

Prasad,
A. K., and Koseff,
J. R., 1989, “Reynolds Number and End-Wall Effects on a Lid Driven Cavity Flow,” Phys. Fluids A, 1, pp. 208–218.

Aidun,
C. K., Triantafillopoulous,
N. G., and Benson,
J. D., 1991, “Global Stability of Lid Driven Cavity With Throughflow: Flow Visualization Studies,” Phys. Fluids A, 3, pp. 2081–2091.

Ramanan,
N., and Homsy,
G. M., 1994, “Linear Stability of Lid Driven Cavity Flow,” Phys. Fluids, 6, pp. 2960–2701.

Ding,
Y., and Kawahara,
M., 1998, “Linear Stability of Incompressible Fluid Flow in a Cavity Using Finite Element Method,” Int. J. Numer. Methods Fluids, 27, pp. 139–157.

Ding,
Y., and Kawahara,
M., 1999, “Three-Dimensional Linear Stability Analysis of Incompressible Viscous Flows Using the Finite Element Method,” Int. J. Numer. Methods Fluids, 31, pp. 451–479.

Albensoeder,
S., Kuhlmann,
H. C., and Rath,
H. J., 2001, “Three-Dimensional Centrifugal-Flow Instabilities in the Lid-Driven-Cavity Problem,” Phys. Fluids A, 13, pp. 121–135.

Goertler, H., 1951, “On the Three-Dimensional Instability of Laminar Boundary Layers on Concave Walls,” NACA Technical Memorandum No. 1375.

Taylor,
G. I., 1923, “Stability of a Viscous Liquid Contained Between Two Rotating Cylinders,” Philos. Trans. R. Soc. London, Ser. A, 45, pp. 289–343.

Humphrey,
J. A. C., Schuler,
C. A., and Webster,
D. R., 1995, “Unsteady Laminar Flow Between a Pair of Disks Corotating in a Fixed Cylindrical Enclosure,” Phys. Fluids, 7, pp. 1225–1240.

Phinney,
L. M., and Humphrey,
J. A. C., 1996, “Extension of the Wall Driven Enclosure Flow Problem to Toroidally Shaped Geometries of Square Cross-Section,” ASME J. Fluids Eng., 118, pp. 779–786.

Sudarsan, R., Humphrey, J. A. C., and Heinrich, J., 1998, “Three-Dimensional Unsteady Wall-Driven Flow in a Toroid of Square Cross-Section: A New CFD Paradigm,” *Proceedings of the ASME FED Summer Meeting: Forum on Industrial and Environmental Applications of Fluid Mechanics*, June 21-25, Washington, DC, ASME, New York, Paper No. FEDSM98-5314.

Cushner, J., 2000, “Experimental Visualization of a Shear-Driven Toroidal LDC Flow,” M.Sc. thesis, College of Engineering, Bucknell University, Lewisburg, PA.