0
TECHNICAL PAPERS

Effect of Unsteady Wake Passing Frequency on Boundary Layer Transition, Experimental Investigation, and Wavelet Analysis

[+] Author and Article Information
M. T. Schobeiri, K. Read

Turbomachinery Performance and Flow Research Laboratory, Texas A&M University, College Station, TX 77843-3123

J. Lewalle

Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY

J. Fluids Eng 125(2), 251-266 (Mar 27, 2003) (16 pages) doi:10.1115/1.1537253 History: Received July 31, 2001; Revised June 14, 2002; Online March 27, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Evans,  R. L., 1978, “Boundary-Layer Development on an Axial-Flow Compressor Stator Blade,” ASME J. Eng. Power, 100, pp. 287–293.
Evans,  R. L., 1982, “Boundary Layer Transition and Separation on a Compressor Rotor Airfoil,” ASME J. Eng. Power, 104, pp. 251–253.
Walker, G. J., 1974, “The Unsteady Nature of Boundary Layer Transition on an Axial-Flow Compressor Blade,” ASME Paper No. 74-GT-135.
Walker, G. J., 1982, “The Turbulent Boundary Layer on an Axial Compressor Blade,” ASME Paper No. 82-GT-52.
Walker,  G. J., 1989, “Transitional Flow on Axial Turbomachine Blading,” AIAA J., 27, pp. 595–602.
Walker,  G. J., 1993, “The Role of Laminar-Turbulent Transition in Gas Turbine Engines: A Discussion,” ASME J. Turbomach., 115, pp. 207–217.
Walker,  G. J., and Gostelow,  J. P., 1990, “The Effect of Adverse Pressure Gradients on the Nature and the Length of Boundary Layer Transition,” ASME J. Turbomach., 112, pp. 196–205.
Schultz,  H. D., Gallus,  H. E., Lakshminarayana,  B., “Three-Dimensional Separated Flow Field in the Endwall Region of an Annular Compressor Cascade in the Presence of Rotor-Stator Interaction, Part 2—Unsteady Flow and Pressure Field,” ASME J. Turbomach., 112, pp. 679–690.
Poensgen,  C., and Gallus,  H. E., 1991, “Three-Dimensional Wake Decay Inside of a Compressor Cascade and Its Influence on the Downstream Flow Field: Part I—Wake Decay Characteristics in the Flow Passage,” ASME J. Turbomach., 113, pp. 180–189.
Poensgen,  C., Gallus,  H. E., 1991, “Three-Dimensional Wake Decay Inside of a Compressor Cascade and Its Influence on the Downstream Flow Field: Part II—Unsteady Flow Field Downstream of the Stator,” ASME J. Turbomach., 113, pp. 190–197.
Hodson, H. P., 1984, “Measurement of Wake-Generated Unsteadiness in the Rotor Passage of Axial Flow Turbines,” ASME Paper No. 84-GT-189.
Hodson,  H. P., 1984, “Boundary Layer and Loss Measurements on the Rotor of an Axial Flow Turbine,” ASME J. Eng. Gas Turbines Power, 106, pp. 181–192.
Hodson,  H. P., and Addison,  J. S., 1989, “Wake-Boundary Layer Interactions in an Axial Flow Turbine Rotor at Off-Design Conditions,” ASME J. Turbomach., 111, pp. 181–192.
Blair,  M. F., 1983, “The Effect of Free Stream Turbulence on the Turbulence Structure and Mean Profile Development,” ASME J. Heat Transfer, 105, pp. 33–47.
Blair, M. F., Dring, R. P., and Joslyn, H. D., 1988, “The Effect of Turbulence and Stator/Rotor Interactions on Turbine Heat Transfer,” Part 1: ASME Paper No. 88-GT-125; Part II: ASME Paper No. 88-GT-5.
Dring, R. P., Joslyn, H. D., Hardin, L. W., and Wagner, J. H., 1982, “Turbine Rotor-Stator Interaction,” ASME Paper No. 82-GT-3.
Dring, R. P., Blair, M. F., Joslyn, H. D., Power, G. D., and Verdon, J. M., 1986. “The Effect of Inlet Turbulence and Rotor/Stator Interactions on the Aerodynamics and Heat Transfer of a Large Scale Rotating Turbine Model,” NASA CR 4079.
Joslyn,  H. D., Dring,  R. O., and Sharma,  P., 1983, “Unsteady Three-Dimensional Turbine Aerodynamics,” ASME J. Eng. Power, 105, pp. 322–331.
Wittig, S., Schulz, A., Dullenkopf, K., and Fairbank, J., 1988, “Effects of Free-Stream Turbulence and Wake Characteristics on the Heat Transfer Along a Cooled Gas Turbine Blade,” ASME Paper No. 88-GT-179.
Dullenkopf, K., 1992, “Untersuchungen zum Einfluβ periodisch instationärer Nachlaufströmungen auf den Wärmeübergang konvektiv gekühlter Gasturbinenschaufeln,” dissertation der Technischen Hochschule Karlsruhe, Germany.
Gaugler, R., 1985, “A Review and Analysis of Boundary Layer Transition Data for Turbine Application,” ASME Paper No. 85-GT-83.
Schobeiri, T., McFarland, E., and Yeh, F., 1991, “Aerodynamics and Heat Transfer Investigations on a High Reynolds Number Turbine Cascade,” NASA TM 103260.
Mayle,  R. E., 1991, “The Role of Laminar-Turbulent Transition in Gas Turbine Engines,” ASME J. Turbomach., 113, pp. 509–537.
Speidel,  L., 1952, “Beeinflussung der laminaren Grenzschicht durch periodische Störung der Zuströmung,” Z. Flugwiss., 5(9), pp. 270–275.
Pache, W., 1976, “Zur Frage der Entwicklung von Strömungsgrenzsschichten bei instationärer Zuströmung in Turbomachinen,” dissertation D-17, Technische Hochschule, Darmstadt, Germany.
Pfeil,  H., and Eifler,  J., 1975, “Zur Frage der Schubspannungsverteilung für die ebenen freien turbulenten Strömungen,” Forschung, Ing.-Wes., 41(4), pp. 105–112.
Pfeil,  H., and Eifler,  J., 1975, “Messungen im turbulenten Nachlauf des Einzelzylinders,” Forschung, Ing.-Wes., 41(5), pp. 137–145.
Pfeil,  H., and Eifler,  J., 1976, “Turbulenzverhältnisse hinter rotierenden Zylindergittern,” VDI-Zeitschrift für Forschung im Ingenieurwesen, 42 (1).
Pfeil, H., and Herbst R., 1979, “Transition Procedure of Instationary Boundary Layers,” ASME Paper No. 79-GT-128.
Herbst, R., 1980, “Entwicklung von Grenzschichten bei instationärer Zuströmung,” dissertation der Technischen Hochschule Darmstadt, Germany, D-17.
Schröder, T., 1985, “Entwicklung des instationären Nachlaufs hinter quer zur Strömungsrichtung bewegten Zylindern und dessen Einfluß auf das Umschalgverhalten von ebenen Grenzschichten stromabwärts angeordneter Versuchskörper,” dissertation der Technischen Hochschule Darmstadt, D-17, Germany.
Pfeil,  H., Herbst,  R., and Schröder,  T., 1983, “Investigation of the Laminar Turbulent Transition of Boundary Layers Disturbed by Wakes,” ASME J. Eng. Power, 105, pp. 130–137.
Schobeiri, M. T., and Radke, R. E., 1994, “Effects of Periodic Unsteady Wake Flow and Pressure Gradient on Boundary Layer Transition along the Concave Surface of a Curved Plate,” ASME Paper No. 94-GT-327.
Schobeiri,  M. T., John,  J., and Pappu,  K., 1996, “Development of Two-Dimensional Wakes Within Curved Channel: Theoretical Framework and Experimental Investigations,” ASME J. Turbomach., 118, pp. 506–518.
Arndt,  N., 1993, “Blade Row Interaction in a Multi-Stage Low Pressure Turbine,” ASME J. Turbomach., 115, pp. 137–146.
Schobeiri, M. T., Pappu, K., and Wright, L., 1995, “Experimental Study of the Unsteady Boundary Layer Behavior on A Turbine Cascade,” ASME Paper No. 95-GT-435.
Schobeiri, T., and Pardivala, D., 1992, “Development of a Subsonic Flow Research Facility for Simulating the Turbomachinery Flow and Investigating its Effects on Boundary Layer Transition, Wake Development and Heat Transfer,” Fourth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC, pp. 98–114.
Liu,  X., and Rodi,  W., 1991, “Experiments on Transitional Boundary Layers With Wake-Induced Unsteadiness,” J. Fluid Mech., 231, pp. 229–256.
John,  J., and Schobeiri,  T., 1993, “A simple and Accurate Method for Calibrating X-Probes,” ASME J. Fluids Eng., 115, pp. 148–152.
Addison,  J. S., and Hodson,  H. P., 1990, “Unsteady Transition in an Axial-Flow Turbine—Part 1: Measurements on the Turbine Rotor,” ASME J. Turbomach., 112, pp. 206–214.
Addison,  J. S., and Hodson,  H. P., 1990, “Unsteady Transition in an Axial-Flow Turbine—Part 2: Cascade Measurements and Modelling,” ASME J. Turbomach., 112, pp. 215–221.
Orth, U., 1991, “Entwicklung des instationären Nachlaufs hinter quer zur Strömungsrichtung bewegten Zylindern und dessen Einfluß auf das Umschlagverhalten von ebenen Grenzschichten stromabwärts angeordneter Versuchskörper,” dissertation D-17, Technische Hochschule Darmstadt.
Orth, U., 1992, “Unsteady Boundary Layer Transition in Flow Periodically Disturbed by Wakes,” ASME Paper No. 92-GT-283.
Hedley,  T. B., and Keffer,  J. F., 1974, “Turbulent/Non-turbulent decisions in an intermittent flow,” J. Fluid Mech., 64, pp. 625–644.
Antonia,  R. A., 1981, “Conditional Sampling in Turbulence Measurement,” Annu. Rev. Fluid Mech., 13, pp. 131–156.
John,  J., and Schobeiri,  M. T., 1996, “Development of Two-Dimensional Wakes in a Curved Channel at Positive Pressure Gradient,” ASME J. Fluids Eng., 118, pp. 292–299.
Schobeiri, M. T., and Chakka, P., 1998, “Unsteady Wake Effects on Boundary Layer Transition and Heat Transfer Characteristics of a Turbine Blade,” ASME Paper No. 98-GT-291.
Narasimha,  R., 1957, “On the Distribution of Intermittency in the Transition Region of a Boundary Layer,” J. Aerosp. Sci., 24, pp. 711–712.
Halstead, E. D., et al., 1995, “Boundary Layer Development in Axial Compressors and Turbines: Parts 1 to 4,” ASME Paper No. 95-GT-461 to 95-GT-464.
Daubechies, I., 1992, Ten Lectures on Wavelets, S.I.A.M.
Farge,  M., 1992, “Wavelet Transforms and their Applications to Turbulence,” Annu. Rev. Fluid Mech., 24, pp. 395–457.
Higuchi,  H., Lewalle,  J., and Crane,  P., 1994, “On the Structure of a Two-Dimensional Wake Behind a Pair of Flat Plates,” Phys. Fluids A, 6, pp. 297–305.
Lewalle, J., 1994, “Wavelet Analysis of Experimental Data: Some Methods and the Underlying Physics,” AIAA Paper No. 94-2281.
Lewalle, J., Aspis, D. E., and Sohn, K. H., 1997, “Demonstration of Wavelet Techniques in Spectral Analysis of Bypass Transition Data,” NASA TP-3555.
Kline,  S. J., and McKlintock,  F. A., “Describing Uncertainties in Single-Sample Experiments,” Mech. Eng. (Am. Soc. Mech. Eng.), 75, Jan., pp. 3–8.

Figures

Grahic Jump Location
Schematic of unsteady wake flow propagation through a multistage turbine in an absolute and relative frame of reference. Note the number of wakes through each row.
Grahic Jump Location
Test section: 1–traversing system; 2–nozzle; 3–wake generator; 4–electric motor; 5–convex wall; 6–concave wall; 7–hot-wire probe; 8–plexiglass wall; 9–curved plate; 10–vernier; 11–vernier
Grahic Jump Location
Time-averaged velocity profiles at the leading edge for (a) 5 rods, (b) 10 rods, and (c) 15 rods
Grahic Jump Location
Time-averaged turbulence intensity contours for (a) 5 rods, (b) 10 rods, and (c) 15 rods
Grahic Jump Location
Ensemble-averaged turbulence intensity contours at t/τ=0.02, 0.25, 0.49, 0.72, 0.96 for 5 rods
Grahic Jump Location
Ensemble-averaged turbulence intensity contours at t/τ=0.02, 0.25, 0.49, 0.72, 0.96 for 15 rods
Grahic Jump Location
Ensemble-averaged nondimensional velocity in the temporal-spatial domain at y=0.3 mm for (a) 5 rods, (b) 10 rods, and (c) 15 rods
Grahic Jump Location
Ensemble-averaged nondimensional velocity in the temporal-spatial domain at y=2.5 mm for (a) 5 rods, (b) 10 rods, and (c) 15 rods
Grahic Jump Location
Ensemble-averaged reference turbulence intensity in the temporal-spatial domain at y=0.3 mm for (a) 5 rods, (b) 10 rods, and (c) 15 rods
Grahic Jump Location
Ensemble-averaged reference turbulence intensity in the temporal-spatial domain at y=2.5 mm for (a) 5 rods, (b) 10 rods, and (c) 15 rods
Grahic Jump Location
Ensemble-averaged intermittency γ in temporal-spatial domain at y=0.1 mm for (a) 5 rods, (b) 10 rods, and (c) 15 rods
Grahic Jump Location
Ensemble-averaged intermittency γ in temporal-spatial domain at y=10.0 mm for (a) 5 rods, (b) 10 rods, and (c) 15 rods
Grahic Jump Location
Relative intermittency as a function of nondimensionalized lateral coordinate for (a) 3 rods and (b) 15 rods
Grahic Jump Location
Maximum, minimum, and time-averaged intermittency distributions as a function of axial Reynolds number for (a) 3 rods and (b) no rods (steady case)
Grahic Jump Location
Ensemble-averaged dominant time scales in temporal-spatial domain at y=10.0 mm, wake passing frequencies for (a) 5 rods, (b) 10 rods, (c) 15 rods
Grahic Jump Location
Ensemble-averaged dominant time scales in temporal-spatial domain at y=0.75 mm, wake passing frequencies for (a) 5 rods, (b) 10 rods, (c) 15 rods
Grahic Jump Location
Ensemble-averaged dominant “laminar” time scales in temporal-spatial domain at y=10 mm for (a) 5 rods, (b) 10 rods, (c) 15 rods

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In