0
TECHNICAL PAPERS

On the Anisotropy of Axisymmetric Strained Turbulence in the Dissipation Range

[+] Author and Article Information
J. Jovanović, I. Otić, P. Bradshaw

Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg, Cauerstrasse 4, D-91058 Erlangen, Germany

J. Fluids Eng 125(3), 401-413 (Jun 09, 2003) (13 pages) doi:10.1115/1.1568355 History: Received February 27, 2002; Revised December 04, 2002; Online June 09, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kolmogorov,  A. N., 1941, “Local Structure of Turbulence in an Incompressible Fluid at Very High Reynolds Numbers,” Dokl. Akad. Nauk SSSR, 30, pp. 299–303.
Kolmogorov,  A. N., 1942, “Equations of Motion of an Incompressible Turbulent Fluid,” Izv. Akad. Nauk SSR Ser. Fiz. Mat. Nauk, 6, pp. 56–58.
Launder, B. E., 1971, “Mathematical Models and Turbulence—Lecture 1,” Mechanical Engineering Department, Imperial College, London, s. 17.
Chou,  P. Y., 1945, “On the Velocity Correlation and the Solution of the Equation of Turbulent Fluctuation,” Q. Appl. Math., 3, pp. 38–54.
Kolovandin,  B. A., and Vatutin,  I. A., 1972, “Statistical Transfer Theory in Non-homogeneous Turbulence,” Int. J. Heat Mass Transf., 15, pp. 2371–2383.
Jovanović, J., Ye, Q.-Y., and Durst, F., 1992, “Refinement of the Equation for the Determination of Turbulent Micro-scale,” Universität Erlangen-Nürnberg, Report Number LSTM 349/T/92.
Jovanović,  J., Ye,  Q.-Y., and Durst,  F., 1995, “Statistical Interpretation of the Turbulent Dissipation Rate in Wall-Bounded Flows,” J. Fluid Mech., 293, pp. 321–347.
Durbin,  P. A., and Speziale,  C. G., 1991, “Local Anisotropy in Strained Turbulence at High Reynolds Numbers,” ASME J. Fluids Eng., 113, pp. 707–709.
Lumley,  J. L., 1992, “Some Comments on Turbulence,” Phys. Fluids, 4, pp. 203–211.
Batchelor, G. K., 1953, The Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge, UK, pp. 68–75.
Uberoi,  M. S., 1957, “Equipartition of Energy and Local Isotropy in Turbulent Flows,” J. Appl. Phys., 28, pp. 1165–1170.
Monin, A. S., and Yaglom, A. M., 1975, Statistical Fluid Mechanics, Vol. 2, M.I.T. Press, Cambridge, MA, pp. 453–461.
Antonia,  R. A., Anselment,  F., and Chambers,  A. J., 1986, “Assessment of Local Isotropy Using Measurements in a Turbulent Plane Jet,” J. Fluid Mech., 169, pp. 365–391.
Saddoughi,  S. G., and Veeravalli,  S. V., 1994, “Local Isotropy in Turbulent Boundary Layers at High Reynolds Number,” J. Fluid Mech., 268, pp. 333–372.
Lumley,  J. L., 1978, “Computational Modelling of Turbulent Flows,” Adv. Appl. Mech., 18, pp. 123–176.
Jovanović,  J., and Otić,  I., 2000, “On the Constitutive Relation for the Reynolds Stresses and the Prandtl-Kolmogorov Hypothesis of Effective Viscosity in Axisymmetric Strained Turbulence,” ASME J. Fluids Eng., 122, pp. 48–50.
Rogallo, R. S., 1981, “Numerical Experiments in Homogeneous Turbulence,” NASA Technical Memo. 81315.
Ye, Q.-Y., 1996, “Die turbulente Dissipation mechanischer Energie in Scherschichten,” Ph.D. thesis, Universität Erlangen-Nürnberg.
Rotta,  J. C., 1951, “Statistische Theorie nichthomogener Turbulenz,” Z. Phys., 129, pp. 547–572.
Kolmogorov,  A. N., 1941, “On Degeneration of Isotropic Turbulence in an Incompressible Viscous Liquid,” Dokl. Akad. Nauk SSSR, 6, pp. 538–540.
Sreenivasan,  K. R., 1984, “On the Scaling of the Turbulence Energy Dissipation Rate,” Phys. Fluids, 27, pp. 1048–1051.
Hinze, J. O., 1975, Turbulence, 2nd Ed., McGraw-Hill, New York, p. 260.
Tennekes, H., and Lumley, J. L., 1972, A First Course in Turbulence, M.I.T. Press, Cambridge, MA.
Corrsin, S., 1963 “Turbulence: Experimental Methods,” Handbuch der Physik, Vol. VIII/2, Springer, Berlin, pp. 524–590.
Uberoi,  M. S., 1956, “Effects of Wind-Tunnel Contraction on Free Stream Turbulence,” J. Aero. Sci.,, 23, pp. 754–764.
Comte-Bellot,  G., and Corrsin,  S., 1966, “The Use of a Contraction to Improve the Isotropy of Grid-Generated Turbulence,” J. Fluid Mech., 25, pp. 657–682.
Hussain,  A. K. M. F., and Ramjee,  V., 1976, “Effects of the Axisymmetric Contraction Shape on Incompressible Turbulent Flow,” ASME J. Fluids Eng., 98, pp. 58–69.
Garg,  S., and Warhaft,  Z., 1998, “On the Small Scale Structure of Simple Shear Flow,” Phys. Fluids, 10, pp. 662–673.
Pumir,  A., and Shraiman,  B. I., 1995, “Persistent Small Scale Anisotropy in Homogeneous Shear Flows,” Phys. Rev. Lett., 75, pp. 3114–3117.
Lee, M. J., 1985, “Numerical Experiments on the Structure of Homogeneous Turbulence,” Ph.D. thesis, Stanford University, Stanford, CA.
Davidson,  P. A., 2000, “Was Loitsyansky Correct? A Review of the Arguments,” J. Turb.,, 1, pp. 1–13.
Saffman,  P. G., 1967, “Note on Decay of Homogeneous Turbulence,” Phys. Fluids, 10, pp. 13–49.
Kolovandin,  B. A., 1991, “Modelling the Dynamics of Turbulent Transport Process,” Adv. Heat Transfer, 21, pp. 185–237.
Jovanović, J., Ye, Q.-Y., Jakirlić, S., and Durst, F., 2001, “Turbulence Closure for the Dissipation Rate Correlations,” Universität Ernalngen-Nürnberg, Report Number LSTM 618/T.
Coleman, G. N., and Mansour, N. N., 1991, “Simulation and Modelling of Homogeneous Compressible Turbulence Under Isotropic Mean Compression,” Proc. Eight. Symp. on Turbulent Shear Flows, Technische Universität München, Munich, pp. 21.3.1–21.3.6.
Mansour,  N. N., and Wray,  A. A., 1994, “Decay of Isotropic Turbulence at Low Reynolds Number,” Phys. Fluids, 6, pp. 808–814.
Poinsot, T. J., 1991, “Flame Ignition in a Premixed Turbulent Flow,” Annual Research Briefs, Center for Turbulence Research, Stanford University, pp. 251–272.
Bernsdorf,  J., Brenner,  G., and Durst,  F., 1998, “Simulation of a 2D Channel Flow Around a Square Obstacle With Lattice-Boltzmann Automata,” Int. J. Mod. Phys. C, 9, pp. 1129–1141.
Lumley,  J. L., and Newman,  G., 1977, “The Return to Isotropy of Homogeneous Turbulence,” J. Fluid Mech., 82, pp. 161–178.
Fischer,  M., Jovanović,  J., and Durst,  F., 2001, “Reynolds Number Effects in the Near-Wall Region of Turbulent Channel Flows,” Phys. Fluids, 13, pp. 1755–1767.
Spalart,  P. R., 1986, “Numerical Study of Sink-Flow Boundary Layers,” J. Fluid Mech., 172, pp. 307–328.
Seidl, V., 1997, “Entwicklung und Anwendung eines Parallelen Finite-Volumen-Verfahrens zur Strömungssimulation auf unstrukturierten Gittern mit lokaler Verfeinerung,” Institut für Schiffbau, Universität Hamburg, Bericht Nr. 585.
Crow,  S. C., 1968, “Viscoelastic Properties of Fine-Grained Incompressible Turbulence,” J. Fluid Mech., 33, pp. 1–20.
Launder,  B. E., Reece,  G. J., and Rodi,  W., 1975, “Progress in the Development of a Reynolds Stress Turbulence Closure,” J. Fluid Mech., 68, pp. 537–566.
Hallbäck,  M., Groth,  J., and Johansson,  A. V., 1990, “An Algebraic Model for Nonisotropic Turbulent Dissipation Rate in Reynolds Stress Closures,” Phys. Fluids A, 2, pp. 1859–1866.
Reynolds, W. C., 1984, “Physical and Analytical Foundations, Concepts and New Directions in Turbulence Modelling and Simulation,” Turbulence Models and Their Applications, B. E. Launder, W. C. Reynolds, W. Rodi, J. Mathieu, and D. Jeandel, eds., 2 , CEA-EDF INRIA, Paris, Thermosciences Division, Mechanical Engineering Department, Stanford University, Stanford, CA, pp. 150–294.
Ferziger, J., 1980, “Homogeneous Turbulent Flows,” Proceedings 1980-81 AFOSR-HTTM Stanford Conference on Complex Turbulent Flows, S. J. Kline, B. J. Cantwell, and G. M. Lilley, eds., I , Stanford University, CEA-EDF INRIA, Eyrolles, Paris, pp. 405–433.
Kovasznay, L. S. G., 1966, “Turbulence Measurements,” Applied Mechanics Surveys, ASME, New York, pp. 971–982.
Uberoi,  M. S., and Wallis,  S., 1966, “Small Axisymmetric Contraction of Grid Turbulence,” J. Fluid Mech., 24, pp. 539–543.
Tan-atichat, J., 1980, “Effects of Axisymmetric Contractions on Turbulence of Various Scales,” Ph.D. thesis, Illinois Institute of Technology.
Batchelor,  G. K., and Proudman,  I., 1954, “The Effect of Rapid Distortion of a Fluid in Turbulent Motion,” Q. J. Mech. Appl. Math., 7, pp. 83–103.
Ribner, H. S., and Tucker, M., 1952, “Spectrum of Turbulence in a Contracting Stream,” NASA Technical Note 2606.
Traugott, S. C., 1958, “Influence of Solid-Body Rotation on Screen-Produced Turbulence,” NACA Technical Note 4135.
Ibbetson,  A., and Tritton,  D., 1975, “Experiments on Turbulence in a Rotating Fluid,” J. Fluid Mech., 68, pp. 639–672.
Wigeland, R. A., and Nagib, H. M., 1978, “Grid-Denerated Turbulence With and Without Rotation About the Streamwise Direction,” Report R78-1, Illinois Institute of Technology.
Hopfinger,  E. J., Browand,  F. K., and Gagne,  Y., 1982, “Turbulence and Waves in a Rotating Tank,” J. Fluid Mech., 125, pp. 505–534.
Jacquin,  L., Leuchter,  O., Cambon,  C., and Mathieu,  J., 1990, “Homogeneous Turbulence in the Presence of Rotation,” J. Fluid Mech., 220, pp. 1–52.
Veeravalli, S. V., 1990, “An Experimental Study of the Effects of Rapid Rotation on Turbulence,” Annual Research Briefs, Center for Turbulence Research, Stanford University, pp. 203–220.
Bardina,  J., Ferziger,  J. H., and Rogallo,  R. S., 1995, “Effect of Rotation on Isotropic Turbulence: Computation and Modelling,” J. Fluid Mech., 154, pp. 321–336.
Speziale, C. G., Mansour, N. N., and Rogallo, R. S., 1987, “Decay of Turbulence in a Rapidly Rotating Frame,” Studing Turbulence Using Numerical Simulation Databases, Center for Turbulence Research, Stanford University, Report CTR-S87, pp. 205–212.
Bradshaw, P., 1971, An Introduction to Turbulence and its Measurement, Pergamaon, London, pp. 14–17.

Figures

Grahic Jump Location
Anisotropy invariant map and values of the invariant function A for the limiting states of turbulence, with coordinates of the vertices in parentheses
Grahic Jump Location
Distribution of the invariant function A in axisymmetric strained turbulence. Symbols are the DNS results of Rogallo 17 and Lee 30. The lines correspond to the suggested forms (43) for A ; [[dashed_line]], IIIa<0; –, IIIa<0.
Grahic Jump Location
Cross-plot of Pε2 as a function of Pε1 in axisymmetric strained turbulence from the data base of Rogallo 17. The slope of the straight line fitted through the numerical data is 1.12. The dashed line corresponds to the exact analytical solution given by (54).
Grahic Jump Location
Variation of ψ with IIa in axisymmetric contraction calculated from the DNS results of Rogallo 17
Grahic Jump Location
The pressure-strain correlations in axisymmetric strained turbulence. Symbols are the DNS results of Rogallo 17 and Lee 30. The lines correspond to the forms (86) and (87) suggested for Πijf. For large deformations and high Reynolds numbers Πijf represents the major contribution to the pressure-strain correlations.
Grahic Jump Location
History of the energy decay of homogeneous isotropic turbulence: •, Comte-Bellot and Corrsin 26; –, predictions
Grahic Jump Location
Histories of the energy decay of nearly homogeneous isotropic turbulence in uniform rotation. (a) •, Wigeland and Nagib 55, Ω=0; –, predictions; (b) •, Wigeland and Nagib 55, Ω=20 s−1 ; –, predictions; (c) •, Wigeland and Nagib 55, Ω=80 s−1 ; –, predictions.
Grahic Jump Location
Histories of the energy components during relaxation from the axisymmetric strain. (a) • v2, Uberoi 25, RM=UM/ν=3710, contraction=4:1; [[dashed_line]]u2, –v2, predictions; (b) • v2, Uberoi 25, RM=UM/ν=3710, contraction=9:1; [[dashed_line]]u2, –v2, predictions; (c) • v2, Uberoi 25, RM=UM/ν=6150, contraction=4:1; [[dashed_line]]u2, –v2, predictions; (d) • v2, Uberoi 25, RM=UM/ν=12300, contraction=4:1; [[dashed_line]]u2, –v2, predictions.
Grahic Jump Location
Variations of the energy components in axisymmetric contraction. (a) • v2, Tan-atichat 50, contraction=9:1, [[dashed_line]]u2, –v2, predictions. (b) • v2, Tan-atichat 50, contraction=9:1, [[dashed_line]]u2, –v2, predictions. (c) • v2, Tan-atichat 50, contraction=16:1, [[dashed_line]]u2, –v2, predictions.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In