Wagner,
B., and Schmidt,
W., 1978, “Theoretical Investigation of Real Gas Effects in Cryogenic Wind Tunnels,” AIAA J., 16, pp. 580–586.

Anderson, W. K., May 1991, “Numerical Study of the Aerodynamic Effects of Using Sulfur Hexafluoride as a Test Gas in Wind Tunnels,” NASA Technical Paper 3086, NASA Langley Research Center, Hampton, VA.

Anders,
J. B., Anderson,
W. K., and Murthy,
A. V., 1999, “Transonic Similarity Theory Applied to a Supercritical Airfoil in Heavy Gases,” J. Aircr., 36, Nov–Dec, pp. 957–964.

Korte, J. J., 2000, “Inviscid Design of Hypersonic Wind Tunnel Nozzles for Real Gas,” E. Camhi, ed., *Proceedings of the 38th Aerospace Sciences Meeting and Exhibit*, Reno, NV, Jan. 10–13, AIAA, Reston, VA, pp. 1–8.

Bober,
W., and Chow,
W. L., 1990, “Nonideal Isentropic Gas Flow Through Converging-Diverging Nozzles,” ASME J. Fluids Eng., 112, pp. 455–460.

Dziedzidzic,
W. M., Jones,
S. C., Gould,
D. C., and Petley,
D. H., 1993, “Analytical Comparison of Convective Heat Transfer Correlation in Supercritical Hydrogen,” J. Thermophys. Heat Transfer, 7, pp. 68–73.

Brown,
B. P., and Argrow,
B. M., 2000, “Application of Bethe-Zel’dovic-Thompson Fluids in Organic Rankine Cycle Engines,” J. Propul. Power., 16 Nov–Dec, pp. 1118–1123.

Angelino,
G., and Colonna,
P., 1998, “Multicomponent Working Fluids for Organic Rankine Cycles (ORCs),” Energy, 23, pp. 449–463.

Schnerr, G. H., and Leidner, P., 1993, “Numerical Investigation of Axial Cascades for Dense Gases.” E. L. Chin, ed., *PICAST’1—Pacific International Conference on Aerospace Science Technology*, Vol. 2, National Cheng Kung University, Publ., Taiwan, pp. 818–825.

Monaco,
J. F., Cramer,
M. S., and Watson,
L. T., 1997, “Supersonic Flows of Dense Gases in Cascade Configurations,” J. Fluid Mech., 330, pp. 31–59.

Angelino,
G., and Invernizzi,
C., 1996, “Potential Performance of Real Gas Stirling Cycles Heat Pumps,” Int. J. Refrig., 19, p. 390.

Angelino, G., and Invernizzi, C., 2000, “Real Gas Effects in Stirling Engines,” *35th Intersociety Energy Conversion Engineering (IECEC)*, Las Vegas, NV July, AIAA, Reston, VA, pp. 69–75.

Fitzgerald,
R., 1999, “Traveling Waves Thermoacustic Heat Engines Attain High Efficiency,” Phys. Today, 52, pp. 18–20.

Glaister,
P., 1988, “An Approximate Linearized Riemann Solver for the Euler Equations for Real Gases,” J. Comput. Phys., 74, pp. 382–408.

Grossmann,
B., and Walters,
R. W., 1989, “Analysis of the Flux-Split Algorithms for Euler’s Equations With Real Gases,” AIAA J., 27, pp. 524–531.

Vinokur,
M., and Montagne’,
J. L., 1990, “Generalized Flux-Vector Splitting and Roe Average for an Equilibrium Real Gas,” J. Comput. Phys., 89, pp. 276–300.

Liou,
M.-S., van Leer,
B., and Shuen,
J.-S., 1990, “Splitting of Inviscid Fluxes for Real Gases,” J. Comput. Phys., 87, pp. 1–24.

Mottura,
L., Vigevano,
L., and Zaccanti,
M., 1997, “An Evaluation of Roe’s Scheme Generalizations for Equilibrium Real Gas Flows,” J. Comput. Phys., 138, pp. 354–339.

Guardone, A., Selmin, V., and Vigevano, L., 1999, “An Investigation of Roe’s Linearization and Average for Ideal and Real Gases,” Scientific Report DIA-SR 99-01, Politecnico di Milano, Dipartimento di Ingegneria Aerospaziale, Jan.

Drikakis,
D., and Tsangaris,
S., 1993, “Real Gas Effects for Compressible Nozzle Flows,” ASME J. Fluids Eng., 115, pp. 115–120.

Cravero, C., and Satta, A., 2000, “A CFD Model for Real Gas Flows,” ASME Turbo Expo, Munich, May, ASME, New York, pp. 1–10.

Aungier,
R. H., 1995, “A Fast, Accurate Real Gas Equation of State for Fluid Dynamic Analysis Applications,” ASME J. Fluids Eng., 117, pp. 277–281.

Cramer, M. S., 1991, *Nonclassical Dynamics of Classical Gases* (Nonlinear Waves in Real Fluids) International Center for Mechanical Sciences, Courses and Lectures, Springer-Verlag, Berlin.

Aldo,
A. C., and Argrow,
B. M., 1994, “Dense Gas Flows in Minimum Lenght Nozzles,” ASME J. Fluids Eng., 117, pp. 270–276.

Argrow,
B. M., 1996, “Computational Analysis of Dense Gas Shock Tube Flow,” Shock Waves, 6, pp. 241–248.

Brown,
B. P., and Argrow,
B. M., 1998, “Nonclassical Dense Gas Flows for Simple Geometries,” AIAA J., 36, (Oct) pp. 1842–1847.

Brown,
B. P., and Argrow,
B. M., 1997, “Two-Dimensional Shock Tube Flow for Dense Gases,” J. Fluid Mech., 349, pp. 95–115.

Cramer,
M. S., and Park,
S., 1999, “On the Suppression of Shock-Induced Separation in Bethe-Zel’dovich-Thompson Fluids,” J. Fluid Mech., 393, pp. 1–21.

Colonna, P., Rebay, S., and Silva, P., 2002, “Computer Simulations of Dense Gas Flows Using Complex Equations of State for Pure Fluids and Mixtures and State of the Art Numerical Schemes,” Tech Report Università di Brescia, Brescia, Italy.

Reynolds, W. C., 1979, “Thermodynamic Properties in S.I.,” Department of Mechanical Engineering, Stanford University, Stanford, CA.

Sandler, S. I., et al., 1994, *Models for Thermodynamic and Phase Equilibria Calculations*, Marcel Dekker, New York.

Span,
R., Wagner,
W., Lemmon,
E. W., and Jacobsen,
R. T., 2001, “Multiparameter Equations of State—Recent Trends and Future Challanges,” Fluid Phase Equilib., 183–184, pp. 1–20.

Smith,
D. H., and Fere,
M., 1995, “Improved Phase Boundary for One-Component Vapor-Liquid Equilibrium Incorporating Critical Behavior and Cubic Equations of State,” Fluid Phase Equilib., 113, pp. 103–115.

Wong,
D. S. H., and Sandler,
S. I., 1993, “A Theoretically Correct Mixing Rule for Cubic Equations of State,” AIChE J., 38, pp. 671–680.

Keenan, J. H. et al., 1969, *Steam Tables*, John Wiley and Sons, New York.

Haar,
L., and Gallagher,
J. S., 1978, “Thermodynamics Properties of Ammonia,” J. Phys. Chem. Ref. Data, 7, pp. 635–791.

Starling, K. E., 1973, *Equation of State and Computer Prediction—Fluid Thermodynamic Properties for Light Petroleum Substances* Gulf Publishing, Houston.

Martin,
J. J., and Hou,
Y. C., 1955, “Development of an Equation of State for Gases,” AIChE J., 1 (June), pp. 142–151.

McLinden,
M. O., Lemmon,
E. W., and Jacobsen,
R. T., 1998, “Thermodynamic Properties for the Alternative Refrigerants,” Int. J. Refrig. , 21 (June), pp. 322–338.

Stryjeck,
R., and Vera,
J. H., 1986, “PRSV: An Improved Peng-Robinson Equation of State for Pure Compounds and Mixtures,” Can. J. Chem. Eng., 64, pp. 323–333.

Prausnitz,
J. M., 1995, “Some New Frontiers in Chemical Engineering Thermodynamics,” Fluid Phase Equilib., 104, pp. 1–20.

Bassi, F., Rebay, S., and Savini, M., 1991, “Transonic and Supersonic Inviscid Computations in Cascades Using Adaptive Unstructured Meshes,” International Gas Turbine & Aeroengine Congress & Exhibition, Orlando, FL., June 3–6, ASME, New York.

Rebay, S., 1992, “Soluzione Numerica Adattiva su Reticoli non Strutturati delle Equazioni di Eulero,” Ph.D. thesis, Politecnico di Milano, Milano.

Taylor,
R., 1997, “Automatic Derivation of Thermodynamic Property Functions Using Computer Algebra,” Fluid Phase Equilib., 129, pp. 37–47.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1993, *Numerical Recipes in Fortran 77: The Art of Scientific Computing* (Vol. 2, Numerical Analysis Series), 2nd Ed., Cambridge University Press, Cambridge, UK.

Lemmon, E. W., McLinden, M. O., and Friend, D. G., 2001, Thermophysical Properties of Fluid Systems (NIST Chemistry WebBook, NIST Standard Reference Database Number 69), National Institute of Standards and Technology, Gaithersburg MD.

Moldover,
M., Mehl,
J. B., and Greenspan,
M., 1986, “Gas-Filled Spherical Resonators: Theory and Experiment,” J. Acoust. Soc. Am., 79, pp. 253–272.

Cramer,
M. S., November 1989, “Negative Nonlinearity in Selected Fluorocarbons,” Phys. Fluids A, 11, pp. 1894–1897.

Thompson,
P. A., and Lambrakis,
K. C., 1973, “Negative Shock Waves,” J. Fluid Mech., 60, pp. 187–208.

Wilcock,
D. F., 1946, “Vapor Pressure-Viscosity relations in Methylpolysiloxanes,” J. Chem. Am. Soc., 68 (Apr) pp. 691–696.

Colonna, P., 1996, “*Fluidi di Lavoro Multi Componenti Per Cicli Termodinamici di Potenza*,” Ph.D. thesis, Politecnico di Milano, Milano.

Kalina,
A. L., 1984, “Combined Cycle Systems With Novel Bottoming Cycle,” ASME J. Eng. Gas Turbines Power, 106, pp. 737–742.

Ibrahim,
M. B., and Kovach,
R. M., 1993, “A Kalina Cycle Application for Power Generation,” Energy, 18, pp. 961–969.

Marston,
C. H., and Hyre,
M., 1995, “Gas Turbine Bottoming Cycles: Triple-Pressure Steam Versus Kalina,” ASME J. Eng. Gas Turbines Power, 117, pp. 10–15.

Marston,
C. H., 1990, “Parametric Analysis of the Kalina Cycle,” ASME J. Eng. Gas Turbines Power, 112, pp. 107–116.

Rogdakis,
E. D., 1996, “Thermodynamic Analysis, Parametric Study and Optimum Operation of the Kalina Cycle,” Int. J. Energy Res., 20, pp. 359–370.

Heppenstall,
T., 1998, “Advanced Gas Turbine Cycles for Power Generation: A Critical Review,” Appl. Therm. Eng., 18, pp. 837–846.

Verschoor,
M. J. E., and Brouwer,
E. P., 1995, “Description of the SMR Cycle Which Combines Fluid Elements of Steam and Organic Rankine Cycles,” Energy, 20, p. 295.

Orbey,
H., and Sandler,
S. I., 1995, “Equation of State Modeling of Refrigerant Mixtures,” Ind. Eng. Chem. Res., 34, pp. 2520–2525.

Lambrakis,
K. C., and Thompson,
P. A., 1972, “Existence of Real Fluids With Negative Fundamental Derivative,” Phys. Fluids, 15, pp. 933–935.

Flaningam,
O. L., 1986, “Vapor Pressures of Poly(Dimethylsiloxane) Oligomers,” J. Chem. Eng. Data, 31, pp. 266–272.

Wagner,
W., and Pruss,
A., 2001, “New International Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use,” J. Phys. Chem. Ref. Data, 30, to be published.

Span, R., 2000, *Multiparameter Equations of State—An Accurate Source of Thermodynamic Property Data*, Springer-Verlag, Berlin.

Grigiante,
M., Scalabrin,
G., Benedetto,
G., Gavioso,
R. M., and Spagnolo,
R., 2000, “Vapor Phase Acoustic Measurements for R125 and Development of a Helmholtz Free Energy Equation,” Fluid Phase Equilib., 174, pp. 69–79.