Numerical Analysis of Cavitating Flow of Liquid Helium in a Converging-Diverging Nozzle

[+] Author and Article Information
Jun Ishimoto

Department of Intelligent Machines and System Engineering, Hirosaki University, 3, Bunkyo-cho, Hirosaki 036-8561, Japane-mail: ishimoto@cc.hirosaki-u.ac.jp

Kenjiro Kamijo

Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan

J. Fluids Eng 125(5), 749-757 (Oct 07, 2003) (9 pages) doi:10.1115/1.1601253 History: Received October 07, 2002; Revised April 01, 2003; Online October 07, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.


Filina, N. N., and Weisend, J. G., 1996, Cryogenic Two-Phase Flow, Cambridge University Press, New York, pp. 20–76.
Barron, R. F., 1999, Cryogenic Heat Transfer, Taylor & Francis, Philadelphia, PA, pp. 143–213.
Van Sciver, S. W., 1996, Helium Cryogenics, Plenum Press, New York, pp. 77–130.
Kamijo,  K., Yoshida,  M., and Tsujimoto,  Y., 1993, “Hydraulic and Mechanical Performance of LE-7 LOX Pump Inducer,” AIAA J. Propul. Power, 9 (6), pp. 819–826.
Daney,  D. E., 1988, “Cavitation in Flowing Superfluid Helium,” Cryogenics, 28, pp. 132–136.
Van Sciver,  S. W., 1999, “Heat and Mass Transfer Process in Two Phase He II/Vapor,” Cryogenics, 39, pp. 1039–1046.
Ishimoto,  J., Oike,  M., and Kamijo,  K., 2001, “Numerical Analysis of Two-Phase Pipe Flow of Liquid Helium Using Multi-Fluid Model,” ASME J. Fluids Eng., 123, pp. 811–818.
Oike, M., Tokumasu, T., and Kamijo, K., 2001, “Observation of Helium Two-Phase Flow in a Pipe,” Proceedings of the Fourth International Symposium on Cavitation, C. E. Brennen, ed., Pasadena, CA (in CD-ROM).
Ishii,  T., and Murakami,  M., 2002, “Temperature Measurement and Visualization Study of Liquid Helium Cavitation Flow Through Venturi Channel,” Adv. Cryog. Eng., 47B, pp. 1421–1428.
Tien, C. L., Majumdar, A., and Gerner, F. M., 1998, Microscale Energy Transport, Taylor & Francis, Washington, DC, pp. 187–226.
Kataoka,  I., and Serizawa,  A., 1989, “Basic Equations of Turbulence in Gas-Liquid Two-Phase Flow,” Int. J. Multiphase Flow, 15(5), pp. 843–855.
Harlow,  F. H., and Amsden,  A. A., 1975, “Numerical Calculation of Multiphase Fluid Flow,” J. Comput. Phys., 17, pp. 19–52.
Yamamoto,  S., Hagari,  H., and Murayama,  M., 2000, “Numerical Simulation of Condensation Around the 3-D Wing,” Trans. Japan Soc. Aero. Space Sci., 42 (138), pp. 182–189.
Young,  J. B., 1992, “Two-Dimensional, Nonequilibrium, Wet-Stream Calculations for Nozzles and Turbine Cascades,” ASME J. Turbomach., 114, pp. 569–579.
Barenghi,  C. F., Donnelly,  R. J., and Vinen,  W. F., 1983, “Friction on Quantized Vortices in Helium II: A Review,” J. Low Temp. Phys., 52, pp. 189–247.
Bekarevich,  I. L., and Khalatnikov,  I. M., 1961, “Phenomenological Derivation of the Equations of Vortex Motion in Helium II,” Sov. Phys. JETP, 13(3), pp. 643–646.
Kashani,  A., Van Sciver,  S. W., and Strikwerda,  J. C., 1989, “Numerical Solution of Forced Convection Heat Transfer in He II,” Numer. Heat Transfer, Part A, 16, pp. 213–228.
Cross,  M. M., 1975, “Viscosity-Concentration-Shear Rate Relations for Suspensions,” Rheol. Acta, 14, pp. 402–403.
Tomiyama,  A., Zun,  I., Higaki,  H., Makino,  Y., and Sakaguchi,  T., 1997, “A Three-Dimensional Particle Tracking Method for Bubbly Flow Simulation,” Nucl. Eng. Des., 175, pp. 77–86.
Fan, L. S., and Zhu, C., 1998, Principles of Gas-Solid Flows, Cambridge University Press, New York, pp. 87–129.
Murai,  Y., and Matsumoto,  Y., 2000, “Numerical Study of the Three-Dimensional Structure of a Bubble Plume,” ASME J. Fluids Eng., 122, pp. 754–760.
Auton,  T. R., Hunt,  J. C. R., and Prud’homme,  M., 1988, “The Force Exerted on a Body in Invisid Unsteady Non-Uniform Rotational Flow,” J. Fluid Mech., 197, pp. 241–257.
Clift, R., Grace, J. R., and Weber, M. E., 1978, Bubbles, Drops, and Particles, Academic Press, San Diego, CA, pp. 97–141.
Dobran,  F., 1988, “Liquid and Gas-Phase Distributions in A Jet With Phase Change,” ASME J. Heat Transfer, 110, pp. 955–960.
Hirt, C. W., and Romero, N. C., 1975, “Application of a Drift Flux Model to Flashing in Straight Pipes,” Los Alamos Scientific Laboratory Report, LA-6005-MS, pp. 1–16.
Maynard,  J., 1976, “Determination of the Thermodynamics of He II from Sound-Velocity Data,” Phys. Rev. B, 14(9), pp. 3868–3891.
Brooks,  J. S., and Donnelly,  R. J., 1977, “The Calculated Thermodynamic Properties of Superfluid Helium-4,” J. Phys. Chem. Ref. Data, 6(1), pp. 51–104.
McCarty, R. D., 1980, “Thermodynamic Properties of Helium II from 0 K to the Lambda Transitions,” NBS Technical Note, TN-1029.
Lambaré,  H., Roche,  P., Balibar,  S., Maris,  H. J., Andreeva,  O. A., Guthmann,  C., Keshishev,  K. O., and Rolley,  E., 1998, “Cavitation in Superfluid Helium in the Low Temperature Limit,” Eur. Phys. J. B, 2, pp. 381–391.
Caupin,  F., and Balibar,  S., 2001, “Cavitation Pressure in Helium,” Phys. Rev. B, B64, 064507.
Tomiyama,  A., Hirano,  M., 1994, “An Improvement of the Computational Efficiency of the SOLA Method,” JSME Inter. J. Series B, 37(4), pp. 821–826.
Amsden, A. A., and Harlow, F. H., 1970, “The SMAC Method: A Numerical Technique for Calculating Incompressible Fluid Flows,” Los Alamos Scientific Laboratory Report, LA-4370.


Grahic Jump Location
Schematic of computational system used in numerical analysis
Grahic Jump Location
Convergence history for three sets of grids
Grahic Jump Location
Time evolution of void fraction distributions (direction of flow is left to right). (a) Present numerical results, (b) visualization measurement results (Initial measurement conditions: pl(in)=0.289 MPa,Tl(in)=4.50 K,pl(ex)=0.130 MPa).
Grahic Jump Location
Instantaneous liquid phase pressure contours (direction of flow is left to right)
Grahic Jump Location
Time evolution of liquid phase temperature profiles (direction of flow is left to right)
Grahic Jump Location
Fluctuations of bubble radius as a function of time
Grahic Jump Location
Instantaneous normal fluid velocity vector (direction of flow is left to right)
Grahic Jump Location
Instantaneous superfluid velocity vector (direction of flow is left to right)
Grahic Jump Location
Normal fluid and superfluid velocity fluctuations as a function of time; (a) ξ-direction component, (b) η-direction component
Grahic Jump Location
Instantaneous gas phase velocity vector (direction of flow is left to right)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In