0
TECHNICAL PAPERS

Numerical Simulation of Two-Phase Flow in Injection Nozzles: Interaction of Cavitation and External Jet Formation

[+] Author and Article Information
Weixing Yuan

Aerodynamics Laboratory, Institute for Aerospace Research, National Research Council of Canada, Ottawa, ON K1A OR6, Canadae-mail: weixing.yuan@nrc-cnrc.gc.ca

Günter H. Schnerr

Fachgebiet Gasdynamik, Lehrstuhl für Fluidmechanik, Technische Universität München, D-85747 Garching, Germanye-mail: schnerr@flm.mw.tu-muenchen.de

J. Fluids Eng 125(6), 963-969 (Jan 12, 2004) (7 pages) doi:10.1115/1.1625687 History: Received March 11, 2002; Revised May 14, 2003; Online January 12, 2004
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Wu,  K.-J., Su,  C.-C., Steinberger,  R. L., Santavicca,  D. A., and Bracco,  F. V., 1983, “Measurements of the Spray Angle of Atomizing Jets,” ASME J. Fluids Eng., 105, pp. 406–413.
Chaves, H., Knapp, M., Kubitzek, A., Obermeier, F., and Schneider, T., 1995, “Experimental Study of Cavitation in the Nozzle Hole of Diesel Injectors Using Transparent Nozzles,” SAE Paper 950290.
Yuan, W., and Schnerr, G. H., 2002, “Optimization of Two-Phase Flow in Injection Nozzles—Interaction of Cavitation and External Jet Formation,” Proc. 2002 ASME Fluids Engineering Division Summer Meeting, Montreal, Canada, July 14–18.
Wilcox, D. C., 1998, Turbulence Modeling for CFD, DCW Industries, La Cañada, CA.
Sauer, J., and Schnerr, G. H., 2000, “Unsteady Cavitating Flow—A New Cavitation Model Based on a Modified Front Capturing Method and Bubble Dynamics,” Proceedings of 2000 ASME Fluid Engineering Summer Conference, Boston, MA, June 11–15.
Schnerr, G. H., and Sauer, J., 2001, “Physical and Numerical Modeling of Unsteady Cavitation Dynamics,” Proceedings of 4th International Conference on Multiphase Flow, New Orleans, LA.
Spalding, D. B., 1974, “A Method for Computing Steady and Unsteady Flows Possessing Discontinuities of Density,” CHAM Report 910/2.
Rayleigh,  L., 1917, “On the Pressure Developed During the Collapse of a Spherical Cavity,” Philos. Mag., 34 (200), p. 94.
Plesset, M. S., 1969, “Cavitating Flows,” Report No. 85-46, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA.
Fujimoto, H., Mishikori, T., Tsukamoto, T., and Senda, J., 1994, “Modeling of Atomization and Vaporization Process in Flash Boiling Spray,” ICLASS-94, Paper VI-13.
Chen,  Y., and Heister,  S. D., 1996, “Modeling Cavitating Flows in Diesel Injectors,” Atomization Sprays, 6, pp. 709–726.
Ubbink, O., 1997, “Numerical Prediction of Two Fluid Systems With Sharp Interfaces,” Ph.D. thesis, University of London.
Ferziger, J. H., and Perić, M., 1996, Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin.
Yuan,  W., Sauer,  J., and Schnerr,  G. H., 2001, “Modeling and Computation of Unsteady Cavitation Flows in Injection Nozzles,” Mécanique & Industries,2, pp. 383–394.
Roosen, P., Unruh, O., and Behmann, M., 1996, “Untersuchung und Modellierung des transienten Verhaltens von Kavitationserscheinungen bei ein- und mehrkomponentigen Kraftstoffen in schnell durchströmten Düsen,” Report of the Institute for Technical Thermodynamics, RWTH Aachen, Germany.
Reboud, J.-L., Stutz, B., and Coutier, O., 1998, “Two-Phase Flow Structure of Cavitation: Experiment and Modeling of Unsteady Effects,” 3rd International Symposium on Cavitation, Grenoble, France.
Delannoy, Y., and Kueny, J. L., 1990, “Two Phase Flow Approach in Unsteady Cavitation Modelling,” ASME Cavitation and Multiphase Flow Forum, New York, NY.
Yuan, W., and Schnerr, G. H., “Cavitation in Injection Nozzles—Effect of Injection Pressure Fluctuations,” Proceedings 4th International Symposium on Cavitation, California Institute of Technology, Pasadena, CA.
Bergwerk,  W., 1959, “Flow Pattern in Diesel Nozzle Spray Holes,” Proc. Inst. Mech. Eng., 173(25), pp. 655–660.
Soteriou, C. C. E., Smith, M., and Andrews, R. J., 1993, “Cavitation Hydraulic Flip and Atomization in Direct Injection Diesel Sprays,” IMechE Paper C465/051/93, pp. 45–65.
Soteriou, C., Andrews, R., and Smith, M., 1995, “Direct Injection Diesel Sprays and the Effect of Cavitation and Hydraulic Flip on Atomization,” SAE Paper No. 950080, pp. 27–51.

Figures

Grahic Jump Location
Computational mesh and boundary conditions of the two-dimensional plane model injection nozzle
Grahic Jump Location
Experimental density gradient and velocity distribution in the nozzle hole for pInjection=80 bar and pExit=21 bar, flow from left to right, from Roosen et al. 15
Grahic Jump Location
Computed steady vapor fraction distribution in the nozzle hole. pInlet=80 bar,pExit=21 bar=const.,Re=ūInlet⋅H/ν≈2.78×104.
Grahic Jump Location
Experimental density gradient and velocity distribution in the nozzle hole for pInjection=80 bar and pExit=11 bar, flow from left to right, from Roosen et al. 15
Grahic Jump Location
Computed steady vapor fraction distribution in the nozzle hole. pInlet=80 bar,pExit=11 bar=const.,Re=ūInlet⋅H/ν≈2.78×104.
Grahic Jump Location
Computed steady vapor fraction distribution. pInlet=800 bar,pExit=11 bar=const.,Re=ūInlet⋅H/ν≈8.82×104.
Grahic Jump Location
Integrated total vapor volume within and outside the nozzle (top) and mass flow rate at the nozzle exit (bottom) depending on the rectangular inlet pressure pulse. Downstream chamber pressure pExit=11 bar=const.,Re=ūInlet⋅H/ν≈2.78×104.
Grahic Jump Location
Unsteady supercavitation of one cycle. Periodic unsteady inlet pressure pInlet=80±10 bar,f=37.25 kHz, downstream chamber pressure pExit=11 bar=const.,Re=ūInlet⋅H/ν≈2.78×104. Left: vapor fraction distribution; right: air fraction distribution.
Grahic Jump Location
Unsteady jet flow nearby the nozzle exit. Periodic unsteady inlet pressure pInlet=80±10 bar,f=37.25 kHz, downstream chamber pressure pExit=11 bar. Left: computed with cavitation model, Re=ūInlet⋅H/ν≈2.78×104; right: computed without cavitation model, Re=ūInlet⋅H/ν≈3.0×104.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In