0
TECHNICAL PAPERS

Torque Measurements in Spin-Up Flow of Ferrofluids

[+] Author and Article Information
Adam D. Rosenthal, Thomas Franklin, Markus Zahn

Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Laboratory for Electromagnetic and Electronic Systems, Cambridge, MA 02139

Carlos Rinaldi

Massachusetts Institute of Technology, Department of Chemical Engineering, Cambridge, MA 02139

J. Fluids Eng 126(2), 198-205 (May 03, 2004) (8 pages) doi:10.1115/1.1669030 History: Received January 17, 2003; Revised June 14, 2003; Online May 03, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

R. E. Rosensweig, 1997, Ferrohydrodynamics. Mineola, NY: Dover Publications.
Shen,  L. F., Stachowiak,  A., Fateen,  S. E. K., Laibinis,  P. E., and Hatton,  T. A., 2001, “Structure of alkanoic acid stabilized magnetic fluids. A small-angle neutron and light scattering analysis,” Langmuir, 17, pp. 288–299.
Peréz-Castillejos,  R., Plaza,  J. A., Esteve,  J., Losantos,  P., Acero,  M. C., Cane,  C., and Serra-Mestres,  F., 2000, “The use of ferrofluids in micromechanics,” Sensors and Actuators A-Physical, 84, pp. 176–180.
Menz, A., Benecke, W., Pérez-Castillejos, R., Plaza, J. A., Esteve, J., Garcia, N., Higuero, J., and Diez-Caballero, T., 2000, “Fluidic components based on ferrofluids,” presented at 1st Annual International IEEE-EMBS, Special Topic Conference on Microtechnologies in Medicine and Biology, Lyon, France.
Hatch,  A., Kamholz,  A. E., Holman,  G., Yager,  P., and Bohringer,  K. F., 2001, “A ferrofluidic magnetic micropump,” J. Microelectromech. Syst., 10, pp. 215–221.
Berger,  M., Castelino,  J., Huang,  R., Shah,  M., and Austin,  R. H., 2001, “Design of a microfabricated magnetic cell separator,” Electrophoresis, 22, pp. 3883–3892.
Zahn,  M., 2001, “Magnetic fluid and nanoparticle applications to nanotechnology,” J. Nanoparticle Res., 3, pp. 73–78.
Roger,  J., Pons,  J. N., Massart,  R., Halbreich,  A., and Bacri,  J. C., 1999, “Some biomedical applications of ferrofluids,” Eur. Phys. J.: Appl. Phys., 5, pp. 321–325.
Ramchand,  C. N., Pande,  P., Kopcansky,  P., and Mehta,  R. V., 2001, “Application of magnetic fluids in medicine and biotechnology,” Indian J. Pure Appl. Phys., 39, pp. 683–686.
Moskowitz,  R., and Rosensweig,  R. E., 1967, “Nonmechanical Torque Driven Flow in Magnetic Suspensions,” Appl. Phys. Lett., 11, pp. 1967.
Brown,  R., and Horsnell,  T. S., 1969, “The wrong way round,” Electrical Review, 183, pp. 235.
Kagan,  I. Y., Rykov,  V. G., and Yantovskii,  E. I., 1973, “Flow of a dielectric ferromagnetic suspension in a rotating magnetic field,” Magnitnaya Gidrodynamika, 9, pp. 135–137.
Calugaru,  G. H., Cotae,  C., Badescu,  R., Badescu,  V., and Luca,  E., 1976, “A new aspect of the movement of ferrofluids in a rotating magnetic field,” Reviews in Roumanian Physics, 21, pp. 439–440.
Rosensweig, R. E., and Johnston, R. J., 1989, “Aspects of magnetic fluid flow with nonequilibrium magnetization,” in Continuum Mechanics and its Applications, C. A. C. Graham and S. K. Malik, Eds.: Hemisphere Publishing Company, 1989, pp. 707–729.
Rosensweig,  R. E., Popplewell,  J., and Johnston,  R. J., 1990, “Magnetic fluid motion in rotating field,” Journal of Magnetism and Magnetic Materials, 85, pp. 171–180.
Zaitsev,  V. M., and Shliomis,  M. I., 1969, “Entrainment of ferromagnetic suspension by a rotating field,” J. Appl. Mech. Tech. Phys., 10, pp. 696–700.
Glazov,  O. A., 1975, “Motion of a ferrosuspension in rotating magnetic fields,” Magnitnaya Gidrodynamika, 11, pp. 16–22.
Glazov,  O. A., 1975, “Role of higher harmonics in ferrosuspension motion in a rotating magnetic field,” Magnitnaya Gidrodynamika, 11, pp. 31.
Glazov,  O. A., 1982, “Velocity profiles for magnetic fluids in rotating magnetic fields,” Magnitnaya Gidrodynamika, 18, pp. 27.
Glazov,  O. A., 1990, “Dynamics of magnetic fluids in rotating magnetic fields,” Magnitnaya Gidrodynamika, 26, pp. 83–88.
Bozorth, R. M., 1951, Ferromagnetism. New York, NY: IEEE Press.
Shliomis,  M. I., 1974, “Magnetic fluids,” Sov. Phys. Usp., 17, pp. 156.
Onsager,  L., 1936, “Electric Moments of Molecules in Liquids,” J. Am. Chem. Soc., 58, pp. 1486–1493.
Shliomis,  M. I., 1972, “Effective viscosity of magnetic suspensions,” Sov. Phys. JETP, 34, pp. 1291–1294.
Felderhof,  B. U., 2000, “Magnetoviscosity and relaxation in ferrofluids,” Phys. Rev. E, 62, pp. 3848–3854.
Shliomis,  M. I., 2001, “Comment on Magnetoviscosity and relaxation in ferrofluids,” Phys. Rev. E, 6406.
Felderhof, B. U., 2001, “Reply to Comment on ‘Magnetoviscosity and relaxation in ferrofluids,’ ” Phys. Rev. E, 6406 .
Lehlooh,  A. F., Mahmood,  S. H., and Williams,  J. M., 2002, “On the particle size dependence of the magnetic anisotropy energy constant,” Physica B, 321, pp. 159–162.
Melcher, J. R., 1981, Continuum Electromechanics. Cambridge, MA: MIT Press.
Dahler,  J. S., and Scriven,  L. E., 1963, “Theory of structured continua I. General consideration of angular momentum and polarization,” Proc. R. Soc. London, 276, pp. 504–527.
Rinaldi, C., 2002 “Continuum Modeling of Polarizable Systems,” Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA.
Brenner,  H., 1970, “Rheology of two-phase systems,” Annu. Rev. Fluid Mech., 2, pp. 137–176.
Rinaldi,  C., and Zahn,  M., 2002, “Effects of spin viscosity on ferrofluid flow profiles in alternating and rotating magnetic fields,” Phys. Fluids, 14, pp. 2847–2870.

Figures

Grahic Jump Location
Magnetization curves for water-based and Isopar-M ferrofluids obtained using a DMS Vibrating Sample Magnetometer at room temperature, T=299 K
Grahic Jump Location
Linear region (low-field) of the magnetization curves obtained for water-based and Isopar-M ferrofluids at room temperature, T=299 K
Grahic Jump Location
Torque required to restrain the ferrofluid-filled plastic spindle as a function of magnetic field amplitude at various frequencies for the (a) water-based and (b) Isopar-M ferrofluids in a clockwise rotating uniform magnetic field generated by a two-pole induction motor stator winding. Interpolating lines have been added to aid the reader in distinguishing trends in the data
Grahic Jump Location
Re-plot of Fig. 3 torque data as a function of magnetic field frequency at various magnetic field amplitudes for (a) water-based and (b) Isopar-M ferrofluids
Grahic Jump Location
Comparison between torque experimental measurements and predictions (solid lines) of (18) for the water-based ferrofluid (obtained using χ=0.65,η=7×10−3 Nsm−2,ζ=1.4×10−3 Nsm−2,τ=10−5 s, and κ=100). (a) Corresponds to clockwise rotation of the magnetic field and (b) corresponds to counterclockwise rotation of the magnetic field
Grahic Jump Location
Comparison between torque experimental measurements and predictions (solid lines) of (18) for the Isopar-M ferrofluid (obtained using χ=2.2,η=11×10−3 Nsm−2,ζ=2.0×10−3 Nsm−2,τ=2×10−6 s, and κ=100). (a) Corresponds to clockwise rotation of the magnetic field and (b) corresponds to counterclockwise rotation of the magnetic field.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In