0
TECHNICAL PAPERS

Quantitative Evaluation of Blood Damage in a Centrifugal VAD by Computational Fluid Dynamics

[+] Author and Article Information
Xinwei Song, Houston G. Wood

Mechanical and Aerospace Engineering Department, Virginia Artificial Heart Institute, University of Virginia, Charlottesville, VA USA

Amy L. Throckmorton

Biomedical Engineering Department, Virginia Artificial Heart Institute, University of Virginia, Charlottesville, VA USA

James F. Antaki

McGowan Center for Artificial Organ Development, University of Pittsburgh, Pittsburgh, PA USA

Don B. Olsen

Utah Artificial Heart Institute, Salt Lake City, UT USA

J. Fluids Eng 126(3), 410-418 (Jul 12, 2004) (9 pages) doi:10.1115/1.1758259 History: Received April 01, 2003; Revised November 17, 2003; Online July 12, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Noon,  G. P., Morley,  D. L., Irwin,  S., Abdelsayed,  S. V., Benkowski,  R. J., and Lynch,  B. E., 2001, “Clinical experience with the MicroMed DeBakey ventricular assist device.” Ann. Thorac. Surg., 71(3 Suppl), S133–8.
Tamez,  D., Conger,  J. L., Jacobs,  G., Gregoric,  I., Inman,  R. W., Radovancevic,  B. R., Moore,  S. M., Eya,  K., Eichstaedt,  H., Jarvik,  R., and Frazier,  O. H., 2000, “In vivo testing of the totally implantable Jarvik 2000 heart system.” ASAIO J., 46(2), 168.
Throckmorton,  A. L., Allaire,  P. E., Gutgesell,  H. G., Matherne,  G. P., Olsen,  D. B., Wood,  H. G., Allaire,  J. H., and Patel,  S. M., 2002, “Pediatric Circulatory Support Systems.” ASAIO J., 48, 216–221.
Muller, J., Weng, Y., Goettel, P., Nuesser, P., Kilic, A., Arndt, A., Merkel, J., and Hetzer, R., “The First Implantations in Patients of the InCor I Axial Flow Pump with Magnetic Bearings.” 10th Congress of the International Society for Rotary Blood Pumps. Osaka, Japan. 13 September 2002.
Leverett,  L. B., Hellums,  J. D., Alfrey,  C. P., 1972, “Red blood cell damage by shear stress.” Biophys. J., 12, 257–73.
Blackshear, P. L., and Blackshear, G. L., Mechanical Hemolysis. In: Skalak, R., Chien, S., eds. Handbook of Bioengineering. New York: McGraw-Hill, 1987, 15.1–9.
Toshitaka,  Y., Akio,  F., Fujio,  M., 2001, “Influence of static pressure and shear rate on hemolysis of red blood cells.” ASAIO J., 47(4), 351–3.
Richardson,  E., 1975, “Application of a theoretical model for hemolysis in shear flow.” Biorheology, 12, 12–37.
Heuser,  G., and Opitz,  R., 1980, “A couette viscometer for short time shearing in blood.” Biorheology, 17, 17–24.
Schima,  H., Muller,  M. R., Papantonis,  D., 1992, “Minimization of hemolysis in centrifugal blood pump: Influence of different geometries.” Int. J. Artif. Organs, 16(7), 521–9.
Yeleswarapu,  K. K., Antaki,  J. F., Kameneva,  M. V., 1995, “A mathematical model for shear-induced hemolysis.” Artif. Organs, 19(7), 576–582.
Bludszuweit,  C., 1995, “Model for a general mechanical blood damage prediction.” Artif. Organs, 19, 583–589.
Bludszuweit,  C., 1995, “Three-dimensional numerical prediction of stress loading of a blood particles in a centrifugal pump.” Artif. Organs, 19, 590–596.
Song,  X., Wood,  H. G., and Olsen,  D. B., “CFD Study of the 4th Generation Prototype of a Continuous Flow Ventricular Assist Device,” ASME J. Biomech. Eng., 126(2), 180-7.
Weinicke,  J. T., Meier,  D., Mizuguchi,  K., 1995, “A fluid dynamic analysis using flow visualization of the Baylor/NASA implantable axial flow blood pump for design improvement.” Artif. Organs, 19(2), 161–77.
Pohl,  M., Samba,  O., Wendt,  M. O., 1998, “Shear stress related hemolysis and its modeling by mechanical degradation of polymer solutions.” Int. J. Artif. Organs, 21(2), 107–13.
Yamane,  T., Asztolos,  B., Nishida,  M., 1998, “Flow visualization as a complementary tool to hemolysis testing in the development of centrifugal blood pump.” Artif. Organs, 22(5), 375–80.
Masuzawa,  T., Tsukiya,  T., Endo,  S., 1999, “Development of design methods for a centrifugal blood pump with a fluid dynamics approach: results in hemolysis tests.” Artif. Organs, 23(8), 757–61.
Mitamura,  Y., Nakamura,  H., and Sekine,  K., 2000, “Prediction of hemolysis in rotary blood pumps with computational fluid dynamics analysis.” J. Congestive Heart Failure Circulatory Support 1(4), 331–336.
Toshitaka,  Y., Kenji,  S., Akio,  F., 2000, “An investigation of blood flow behavior and hemolysis in artificial organs.” ASAIO J., 46(5), 527–31.
Anderson,  J. B., Wood,  H. G., Allaire,  P. E., 2000, “Numerical Studies of Blood Shear and Washing in a Continuous Flow Ventricular Assist Device.” ASAIO J., 46(4), 486–94.
Anderson, J. B., “Computational Flow Analysis of a Ventricular Assist Device.” Master Thesis, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, 1999.
Apel,  J., Paul,  R., Klaus,  S., 2001, “Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics.” Artif. Organs, 25(5), 341–47.
Wood,  H. G., Anderson,  J., Allaire,  P. E., McDaniel,  J. C., and Bearnson,  G., 1999, “Numerical solution for blood flow in a centrifugal ventricular assist device.” Int. J. Artif. Organs, 22, 827–836.
Pinotti,  M., and Rosa,  E. S., 1995, “Computational prediction of hemolysis in a centrifugal ventricular assist device.” Artif. Organs, 19, 267–273.
Takiura,  K., Masuzawa,  T., Endo,  S., 1998, “Development of design methods of a centrifugal blood pump with in vitro tests, flow visualization, and computational fluid dynamics: results in hemolysis tests.” Artif. Organs, 22, 393–398.
Thomas,  D. C., Butler,  K. C., Taylor,  L. P., 1997, “Continued development of the Nimbus/University of Pittsburgh axial flow left ventricular assist system.” ASAIO J., 43, M564–M566.
Antaki,  J. F., Ghattas,  O., Burgeen,  G. W., and He,  B., 1995, “Computational flow optimization of rotary blood pump components.” Artif. Organs, 19, 608–615.
Allaire,  P. E., Wood,  H. G., Awad,  R. S., and Olsen,  D. B., 1999, “Blood flow in a continuous flow ventricular assist device.” Artif. Organs, 23, 769–773.
Miyazoe,  Y., Sawairi,  T., Ito,  K., 1998, “Computational fluid dynamic analyses to establish design process of centrifugal blood pumps.” Artif. Organs, 23, 381–385.
Blackshear,  P. L., Dormen,  F. D., and Steinbach,  J. H., 1965, “Some mechanical effects that influence hemolysis.” ASAIO Trans., XI, 112–117.
Giersiepen,  M., Wurzinger,  L. J., Opitz,  R., and Reul,  H., 1990, “Estimation of shear stress-related blood damage in heart valve prostheses-in vitro comparison of 25 aortic valves.” Int. J. Artif. Organs, 13(5), 300–306.
Thomas, H. D. Engineering Design of the Cardiovascular System Mammals. Prentice Hall Inc. 1991.
Day,  S. W., McDaniel,  J. C., Wood,  H. G., Allaire,  P. E., Landrot,  N., and Curtas,  A., 2001, “Particle image velocimetry measurements of blood velocity in a continuous flow ventricular assist device.” ASAIO J., 47(4), 406–411.
Day,  S. W., McDaniel,  J. C., Wood,  H. G., Allaire,  P. E., Song,  X., Lemire,  P. P., and Miles,  S. D., 2002, “A prototype HeartQuest ventricular assist device for particle image velocimetry measurements.” Artif. Organs 26(11), 1002–1005.
Lemire,  P. P., McDaniel,  J. C., Wood,  H. G., Allaire,  P. E., Landrot,  N., Song,  X., Day,  S. W., and Olsen,  D. B., 2002, “The Application of Quantitative Oil Streaking to the HeartQuest Left Ventricular Assist Device.” Artif. Organs, 26(11), 971–973.
Curtas, A. R. “Computational Fluid Testing for the Design and Development of a Heart Assist Pump.” Masters Thesis, University of Virginia, May 2000.
Curtas,  A. R., Wood,  H. G., Allaire,  P. E., McDaniel,  J. C., 2002, “CFD Modeling of Impeller Designs for the HeartQuestTM LVAD.” ASAIO J., 48, 552–561.
Apel,  J., Neudel,  F., and Reul,  H., 2001, “Computational Fluid Dynamics and Experimental Validation of a Microaxial Blood Pump.” ASAIO J., 47, 552–558.
Kundu, P. K., and Cohen, I. M., Fluid Mechanics, 2nd Edition. New York: Academic Press, 2002.
Warsi, Z. U. Fluid Dynamics: Theoretical and Computational Approaches, 2nd Edition. Boca Raton: CRC Press, 1999.
Koller,  T., and Hawrylenko,  A., 1967, “Contribution to the in vitro testing of pumps for extracorporeal circulation.” J. Thorac. Cardiovasc. Surg., 54, 22–29.
Naito,  K., Mizuguchi,  K., and Nose,  Y., 1994, “The need for standardizing the index of hemolysis.” Artif. Organs, 18(1), 7–10.
Kawahito,  S., Maeda,  T., Yoshikawa,  M., Takano,  T., Nonaka,  K., 2001, “Blood trauma induced by clinically accepted oxygenators.” ASAIO J., 47, 492–495.
Naito,  K., Suenaga,  E., Cao,  Z. L., Suda,  H., Ueno,  T., Natsuaki,  M., and Itoh,  T., 1996, “Comparative hemolysis study of clinically available centrifugal pumps.” Artif. Organs, 20(6), 560–563.

Figures

Grahic Jump Location
Centrifugal Blood Pump Prototype-CF4b: This VAD includes an inlet elbow, spindle, impeller, clearance region between the rotor and housing, exit volute and diffuser.
Grahic Jump Location
Isotimic Plot of Shear Stress along Blade-tip Surface: This surface along the tip of the blade shows the highest levels of shear stresses in the pump. Higher shear stresses exist along the trailing edge of the impeller region prior to the entering the exit volute and directly along the blades, particularly at the trailing edge. Maximum shear stress values of 250 Pa are found in this plane.
Grahic Jump Location
Streaklines Colored by Exposure Time: Particles released at the inlet port of the computational model and travel through the pump for a given residence time.
Grahic Jump Location
Streaklines for 388 Particles, Colored by Shear Stress: Particles released at inlet port and travel along streaklines or pathlines during steady state flow conditions. Shear stress values are plotted for each nodal location along the streakline for each particle.
Grahic Jump Location
Distribution of Blood Damage Index for Population of 388 Pathlines Studied: Maximum blood damage indices averaged 2% for only a few particles. Most particles experienced a damage index less than 0.5%.
Grahic Jump Location
Distribution of Exposure Time for Population of Particles Studied: Approximately 322 of the 388 particles in this study took less than 0.19 s to travel through the computational flow model. Average residence times are 0.34 second with a maximum exposure time of 5.3 s due to a possible vortex region.
Grahic Jump Location
Shear Stress Power Versus Time for Particle #1
Grahic Jump Location
Shear stress power versus time for particle #2
Grahic Jump Location
Shear stress power versus time for particle #3
Grahic Jump Location
Shear stress power versus time for particle #9
Grahic Jump Location
Shear stress power versus time for particle #10
Grahic Jump Location
Shear rate (dτ/dt) over time for particle #2
Grahic Jump Location
Shear rate (dτ/dt) over time for particle #3

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In