PIV Investigations of the Flow Field in the Volute of a Rotary Blood Pump

[+] Author and Article Information
John M. Sankovic

Dept. of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106   National Aeronautics and Space Administration, John H. Glenn Research Center, 21000 Brookpark Rd., M/S 77-5, Cleveland, Ohio 44135

Jaikrishnan R. Kadambi, Mehul Mehta

Dept. of Mechanical and Aerospace Engineering, Case Western University, 10900 Euclid Ave., Cleveland, Ohio 44106

William A. Smith

Dept. of Biomedical Engineering, The Lerner Research Center, The Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, Ohio 44195

Mark P. Wernet

National Aeronautics and Space Administration, John H. Glenn Research Center, 21000 Brookpark Rd., M/S 77-1, Cleveland, Ohio 44135

J. Fluids Eng 126(5), 730-734 (Dec 07, 2004) (5 pages) doi:10.1115/1.1789529 History: Received March 10, 2003; Revised January 21, 2004; Online December 07, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Stevenson,  L. W., and Kormos,  R. L., 2001, “Mechanical Cardiac Support 2000: Current applications and future trial design,” J. Thorac. Cardiovasc. Surg., 121, pp. 418–24.
Soundranayagam,  S., and Ramarajan,  V., 1986, “Scale Effects in a Mixed Flow Pump: Part 2,” Proc. Inst. Mech. Eng., 200, pp. 180–186.
Gopalakrishnan,  S., 1999, “Pump Research and Development: Past, Present, and Future- An American Perspective,” J. Fluids Eng., 121, pp. 237–247.
Raffel, M., Willert, C.E., and Kompenhaus, J., 1998, Particle Image Velocimetry: A Practical Guide, Springer, Berlin.
Dong,  R., Chu,  S., and Katz,  J., 1992, “Quantitative Visualization of the Flow Within the Volute of a Centrifugal Pump. Part B: Results and Analysis,” J. Fluids Eng., 114, pp. 396–403.
Kadambi, J.R., Mehta, M., Charoenngam, P., Wernet, M., Sankovic, J., and Addie, A., 2003, “Particulate Velocity Measurements in the Intra-Blade Passages of a Centrifugal Slurry Pump,” FEDSM2003-45504, Proceedings of the 2003 ASME Fluids Engineering Division Summer Meeting, Honolulu, HI, July 6–10.
Chu,  S., Dong,  R., and Katz,  J., 1995, “Relationship between unsteady flow, pressure fluctuations, and noise in a centrifugal pump-part A: use of PDV data to compute the pressure field,” J. Fluids Eng., 117, pp. 24–29.
Sinha,  M., and Katz,  J., 2000, “Quantitative visualization of the flow in a centrifugal pump with diffuser vanes-1:on flow structures and turbulence,” J. Fluids Eng., 122, pp. 997–1007.
Kerrigan,  J. P., Shaffer,  F. D., Maher,  T. R., Dennis,  T. J., Borovetz,  H. S., and Antaki,  J. F., 1993, “Fluorescent Image Tracking Velocimetry of the Nimbus AxiPump,” ASAIO J., 39, pp. M639–M643.
Kerrigan,  J. P., Yamazaki,  K., Meyer,  R. K., Mori,  T., Otake,  Y., Outa,  E., Umezu,  M., Borovetz,  H. S., Kormos,  R. L., Griffith,  B. P., Koyanagi,  H., and Antaki,  J. F., 1996, “High-Resolution Fluorescent Particle-Tracking Flow Visualization Within an Intraventricular Axial Flow Left Ventricular Assist Device,” Artif. Organs, 20, pp. 534–540.
Pinotti,  M., and Paone,  N., 1996, “Estimating Mechanical Blood Trauma in a Centrifugal Blood Pump: Laser Doppler Anemometer Measurements of the Mean Velocity Field,” Artif. Organs, 20, pp. 546–552.
Sakuma,  I., Tadokoro,  H., Fukui,  Y., and Dohi,  T., 1995, “Flow Visualization Study on Centrifugal Blood Pump Using a High Speed Video Camera,” Artif. Organs, 19, pp. 665–670.
Sakuma,  I., Fukui,  Y., and Dohi,  T., 1996, “Study of Secondary Flow in Centrifugal Blood Pumps Using a Flow Visualization Method with a High-Speed Video Camera,” Artif. Organs, 20, pp. 541–545.
Asztalos,  B., Yamane,  T., and Nishida,  M., 1999, “Flow Visualization Analysis for Evaluation of Shear and Recirculation in a New Closed-Type, Monopivot Centrifugal Blood Pump,” Artif. Organs, 23, pp. 939–946.
Subramanian,  A., Mu,  H., Kadambi,  J. R., Wernet,  M. P., Brendzel,  A. M., and Harasaki,  H., 2000, “Particle Image Velocimetry Investigation of Intravalvular Flow Fields of a Bileaflet Mechanical Heart Valve in a Pulsatile Flow,” J. Heart Valve Dis., 9, pp. 721–731.
Wernet,  M. P., Subramanian,  A., Mu,  H., and Kadambi,  J. R., 2000, “Comparison of particle image velocimetry and laser Doppler anemometry measurements in turbulent fluid flow,” Ann. Biomed. Eng., 28, pp. 1393–1396.
Mussivand,  T., Day,  K. D., and Naber,  B. C., 1999, “Fluid Dynamic Optimization of a Ventricular Assist Device Using Particle Image Velocimetry,” ASAIO J., 45, pp. 25–31.
Day,  S. W., McDaniel,  J. C., Wood,  H. G., Allaire,  P. E., Landrot,  N., and Curtas,  A., 2001, “Particle Image Velocimetry Measurements of Blood Velocity in a Continuous Flow Ventricular Assist Device,” ASAIO J., 47, pp. 406–411.
Day,  S. W., McDaniel,  J. C., Wood,  H. G., Allaire,  P. E., Song,  X., Lemire,  P. P., and Miles,  S. D., 2002, “A Prototype HeartQuest Ventricular Assist Device for Particle Image Velocimetry Measurements,” Artif. Organs, 26, pp. 1002–1005.
Bernstein,  E. F., Cosentino,  L. C., Reich,  S., Stasz,  P., Levine,  I. D., Scott,  D. R., Dorman,  F. D., and Blackshear,  P. L., 1974, “A compact, low hemolysis, non-thrombogenic system for non-thoracotomy prolonged left ventricular bypass,” Trans. Am. Soc. Artif. Intern. Organs, 20, pp. 645–654.
Golding,  L. A., and Smith,  W. A., 1996, “Cleveland Clinic Rotodynamic Pump,” Ann. Thorac. Surg., 61, pp. 457–462.
Veres,  J. P., Golding,  L. A., Smith,  W. A., Horvath,  D., and Medvedev,  A., 1997, “Flow Analysis of the Cleveland Clinic Centrifugal Pump,” ASAIO J., 43, pp. M778–M881.


Grahic Jump Location
Impeller and casing of acrylic model of blood pump
Grahic Jump Location
Pressure-flow curves for pump operating at various speeds utilizing sodium iodide solution
Grahic Jump Location
Schematic diagram of PIV experimental setup
Grahic Jump Location
Sample PIV image showing impeller blade position, volute exit, and diffuser
Grahic Jump Location
Velocity vector maps of volute exit and diffuser region at various impeller speeds at maximum flow condition: (a) 3000 rpm, (b) 3430 rpm, (c) 3850 rpm.
Grahic Jump Location
Similarity of velocity vectors at various points across the volute at location Y=16.5 mm: (a) Velocity magnitude normalized to tip speed, (b) velocity vector angle relative to diffuser axis.
Grahic Jump Location
Velocity vector maps of volute exit and diffuser region at various impeller speeds at 90 mmHg pressure rise: (a) 3000 rpm, (b) 3430 rpm, (c) 3850 rpm
Grahic Jump Location
Reynolds shear stress levels depicted as mean uv(m2/s2): (a) 3850 rpm, 5.1/min/15.8 mmHg. (b) 3000 rpm, 1.8/min/90 mmHg
Grahic Jump Location
Shear rate levels in volute (s−1)




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In