Choi,
H., and Moin,
P., 1990, “On the Space-Time Characteristics of Wall Pressure Fluctuations,” Phys. Fluids A, 2, pp. 1450–1460.

Farabee,
T. M., and Casarella,
M. J., 1991, “Spectral Features of Wall Pressure Fluctuations Beneath Turbulent Boundary Layers,” Phys. Fluids A, 3, pp. 2410–2420.

Jeon,
S., Choi,
H., Yoo,
J. Y., and Moin,
P., 1999, “Space-Time Characteristics of the Wall Shear-Stress Fluctuations in a Low-Reynolds-Number Channel Flow,” Phys. Fluids, 11, pp. 3084–3094.

Kim,
J., 1989, “On the Structure of Pressure Fluctuations in Simulated Turbulent Channel Flow,” J. Fluid Mech., 205, pp. 421–451.

Bullock,
K. J., Cooper,
R. E., and Abernathy,
F. H., 1978, “Structural Similarity in Radial Correlations and Spectra of Longitudinal Velocity Fluctuations in Pipe Flow,” J. Fluid Mech., 88, pp. 585–608.

Naguib,
A. M., and Wark,
C. E., 1992, “An Investigation of Wall-Layer Dynamics Using a Combined Temporal Filtering and Correlation Technique,” J. Fluid Mech., 243, pp. 541–560.

Hites, M. H., 1997, “Scaling of High-Reynolds Number Turbulent Boundary Layers in the National Diagnostic Facility,” Ph.D. thesis, Illinois Institute of Technology.

Kim,
K. C., and Adrian,
R. J., 1999, “Very Large-Scale Motion in the Outer Layer,” Phys. Fluids, 11, pp. 417–422.

Österlund, J. M., 1999, “Experimental Studies of Zero Pressure-Gradient Turbulent Boundary Layer Flow,” Ph.D. thesis, Department of Mechanics, Royal Institute of Technology, Stockholm.

Metzger,
M. M., and Klewicki,
J. C., 2001, “A Comparative Study of Near-Wall Turbulence in High and Low Reynolds Number Boundary Layers,” Phys. Fluids, 13, pp. 692–701.

Antonia,
R. A., and Kim,
J., 1994, “Low-Reynolds-Number Effects on Near-Wall Turbulence,” J. Fluid Mech., 276, pp. 61–80.

Moser,
R. D., Kim,
J., and Mansour,
N. N., 1999, “Direct Numerical Simulation of Turbulent Channel Flow up to Re_{τ}=590,” Phys. Fluids, 11, pp. 943–945.

Abe,
H., Kawamura,
H., and Matsuo,
Y., 2001, “Direct Numerical Simulation of a Fully Developed Turbulent Channel Flow With Respect to the Reynolds Number Dependence,” ASME J. Fluids Eng., 123, pp. 382–393.

del Álamo, J. C., and Jiménez, J., 2001, “Direct Numerical Simulation of the Very Anisotropic Scales in a Turbulent Channel,” Center for Turbulence Research Annual Research Briefs, pp. 329–341.

del Álamo,
J. C., and Jiménez,
J., 2003, “Spectra of the Very Large Anisotropic Scales in Turbulent Channels,” Phys. Fluids, 15, pp. L41–L44.

Abe, H., and Kawamura, H., 2002, “A Study of Turbulence Thermal Structure in a Channel Flow Through DNS up to Re_{τ}=640 With Pr=0.025 and 0.71,” Proceedings of 9th European Turbulence Conference, pp. 399–402.

Jiménez, J., Flores, O., and Garcı́a-Villalba, M., 2001, “The Large-Scale Organization of Autonomous Turbulent Wall Regions,” Center for Turbulence Research Annual Research Briefs, pp. 317–327.

Dukowics,
J. K., and Dvinsky,
A. S., 1992, “Approximate Factorization as a High Order Splitting for the Implicit Incompressible Flow Equations,” J. Comp. Physiol., 102, pp. 336–347.

Morinishi,
Y., Lund,
T. S., Vasilyev,
O. V., and Moin,
P., 1998, “Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow,” J. Comp. Physiol., 143, pp. 90–124.

Jiménez, J., 1998, “The Largest Scales of Turbulent Wall Flows,” Center for Turbulence Research Annual Research Briefs, pp. 137–154.

Kawamura, H., Abe, H., and Shingai, K., 2000, “DNS of Turbulence and Heat Transport in a Channel Flow With Different Reynolds and Prandtl Numbers and Boundary Conditions,” Proceedings of 3rd International Symposium Turbulence, Heat and Mass Transfer, pp. 15–32.

Hussain,
A. K. M. F., and Reynolds,
W. C., 1975, “Measurements in Fully Developed Turbulent Channel Flow,” J. Fluids Eng., 97, pp. 568–580.

Spalart,
P. R., 1988, “Direct Simulation of a Turbulent Boundary Layer up to R_{θ}=1410,” J. Fluid Mech., 187, pp. 61–98.

Falco,
R. E., 1977, “Coherent Motions in the Outer Region of Turbulent Boundary Layers,” Phys. Fluids, 20, pp. S124–SS132.

Brown,
G. L., and Thomas,
A. S. W., 1977, “Large Structure in a Turbulent Boundary Layer,” Phys. Fluids, 20, pp. S243–S252.

Adrian,
R. J., Meinhart,
C. D., and Tomkins,
C. D., 2000, “Vortex Organization in the Outer Layer Region of the Turbulent Boundary Layer,” J. Fluid Mech., 422, pp. 1–54.

Liu,
Z., Adrian,
R. J., and Hanratty,
T. J., 2001, “Large-Scale Modes of Turbulent Channel Flow: Transport and Structure,” J. Fluid Mech., 448, pp. 53–80.

Smith,
C. R., and Metzler,
S. P., 1983, “The Characteristics of Low-Speed Streaks in the Near-Wall Region of a Turbulent Boundary Layer,” J. Fluid Mech., 129, pp. 27–54.

Nakagawa,
H., and Nezu,
I., 1981, “Structure of Space-Time Correlations of Bursting Phenomena in an Open-Channel Flow,” J. Fluid Mech., 104, pp. 1–43.

Perry,
A. E., Henbest,
S., and Chong,
M. S., 1986, “A Theoretical and Experimental Study of Wall Turbulence,” J. Fluid Mech., 165, pp. 163–199.

Kuroda, A., Kasagi, N., and Hirata, M., 1989, “A Direct Numerical Simulation of the Fully Developed Turbulent Channel Flow at a Very Low Reynolds Number,” Proceedings of the International Symposium on Computational Fluid Dynamics, Nagoya, pp. 1174–1179.

Gilbert, N., and Kleiser, L., 1991, “Turbulence Model Testing With the Aid of Direct Numerical Simulation Results,” Proceedings of the Eighth Symposium on Turbulent Shear Flows, TU of Münich, pp. 26.1.1–26.1.6.

Kuroda, A., Kasagi, N., and Hirata, M., 1993, “Direct Numerical Simulation of the Turbulent Plane Couette-Poiseuille Flows: Effect of Mean Shear on the Near Wall Turbulence Structures,” Proceedings of the Ninth Symposium on Turbulent Shear Flows, Kyoto, pp. 8.4.1–8.4.6.

Günther,
A., Papavassiliou,
D. V., Warholic,
M. D., and Hanratty,
T. J., 1998, “Turbulent Flow in a Channel at a Low Reynolds Number,” Exp. Fluids, 25, pp. 503–511.

Fischer,
M., Jovanović,
J., and Durst,
F., 2001, “Reynolds Number Effects in the Near-Wall Region of Turbulent Channel Flows,” Phys. Fluids, 13, pp. 1755–1767.

Alfredsson,
P. H., Johansson,
A. V., Haritonidis,
J. H., and Eckelmann,
H., 1988, “The Fluctuating Wall-Shear Stress and the Velocity Field in the Viscous Sublayer,” Phys. Fluids, 31, pp. 1026–1033.

Wietrzak,
A., and Lueptow,
R. M., 1994, “Wall Shear Stress and Velocity in a Turbulent Axisymmetric Boundary Layer,” J. Fluid Mech., 259, pp. 191–218.

Nepomuceno,
H. G., and Lueptow,
R. M., 1997, “Pressure and Shear Stress Measurements at the Wall in a Turbulent Boundary Layer on a Cylinder,” Phys. Fluids, 9, pp. 2732–2739.

Robinson, S. K., 1991, “The Kinematics of Turbulent Boundary Layer Structure,” NASA TM, 103859.

Komminaho,
J., Lundbladh,
A., and Johansson,
A. V., 1996, “Very Large Structures in Plane Turbulent Couette Flow,” J. Fluid Mech., 320, pp. 259–285.