0
Article

Decay of Pressure and Energy Dissipation in Laminar Transient Flow

[+] Author and Article Information
B. Brunone, M. Ferrante, M. Cacciamani

University of Perugia, Dipartimento di Ingegneria Civile ed Ambientale, Via G. Duranti, 93, 06125, Perugia, Italy

J. Fluids Eng 126(6), 928-934 (Mar 11, 2005) (7 pages) doi:10.1115/1.1839926 History: Received November 10, 2003; Revised July 31, 2004; Online March 11, 2005
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Karney, B. W., and Brunone, B., 1999, “Water Hammer in Pipe Network: Two Case Studies,” Proc., CCWI’99 Int. Conf. on ‘Water Industry Systems: Modelling and Optimization Applications’, D. A. Savic and G. A. Walters, eds., Exeter (UK), 1, pp. 363–376.
Shuy, E. B., and Apelt, C. J., 1983, “Friction Effects in Unsteady Pipe Flows,” Proc., 4th Int. Conf. on ‘Pressure Surges’, H. S. Stephens et al., eds., Bath (UK), BHRA, pp. 147–164.
Drazin, P., and Reid, W., 1991, Hydrodynamics Stability, Cambridge University Press, Cambridge, MA.
van de Sande, E., Belde, A. P., Hamer, A. P., and Hiemstra, W., 1980, “Velocity Profiles in Accelerating Pipe Flows Started From Rest,” Proc., 3rd Int. Conf. on ‘Pressure Surges’, H. S. Stephens et al., eds., Canterbury (UK), BHRA, pp. 1–14.
Hino,  M., Masaki,  S., and Shuji,  T., 1976, “Experiments on Transition to Turbulence in an Oscillatory Pipe Flow,” J. Fluid Mech., 75, part 2, pp. 193–207.
Lefebvre,  P. J., and White,  F. M., 1989, “Experiments on Transition to Turbulence in a Constant-Acceleration Pipe Flow,” ASME J. Fluids Eng., 111, pp. 428–432.
Zielke, W., 1966, “Frequency-Dependent Friction in Transient Pipe Flow,” Ph.D. thesis, The University of Michigan, Ann Arbor.
Zielke,  W., 1968, “Frequency-Dependent Friction in Transient Pipe Flow,” J. Basic Eng., 90(1), pp. 109–115.
Holmboe,  E. L., and Rouleau,  W. T., 1967, “The Effect of Viscous Shear on Transients in Liquid Lines,” J. Basic Eng., 89(1), pp. 174–180.
Achard,  J. L., and Lespinard,  G. M., 1981, “Structure of the Transient Wall-Friction Law in One-Dimensional Models of Laminar Pipe Flows,” J. Fluid Mech., 113, pp. 283–298.
Shuy,  E. B., 1995, “Approximate Wall Shear Equation for Unsteady Laminar Pipe Flows,” J. Hydraul. Res., 33(4), pp. 457–469.
Ghilardi, P., and Barbero, G., 1996, “Energy Dissipation Modelling in Transient Laminar Flow,” Proc., XXV Convegno di Idraulica e Costruzioni Idrauliche, Turin (I), II, pp. 23–32 (in Italian).
Prado,  R. A., and Larreteguy,  A. E., 2002, “A Transient Shear Stress Model for the Analysis of Laminar Water-Hammer Problems,” J. Hydraul. Res., 40(1), pp. 45–53.
Trikha,  A. K., 1975, “An Efficient Method for Simulating Frequency-Dependent Friction in Transient Liquid Flow,” ASME J. Fluids Eng., 97(1), pp. 97–105.
Suzuki,  K., Taketomi,  T., and Sato,  S., 1991, “Improving Zielke’s Method of Simulating Frequency-Dependent Friction in Laminar Liquid Pipe Flow,” ASME J. Fluids Eng., 113(4), pp. 569–573.
Schohl,  G. A., 1993, “Improved Approximate Method for Simulating Frequency-Dependent Friction in Transient Laminar Flow,” ASME J. Fluids Eng., 115(3), pp. 420–424.
Stavistky,  D., and Macagno,  E., 1980, “Approximate Analysis of Unsteady Laminar Flow,” J. Hydraul. Res., 106(HY12), 1973–1980.
Daily,  J. W., Hankey,  W. L., Olive,  R. W., and Jordaan,  J. M., 1956, “Resistance Coefficients for Accelerated and Decelerated Flows Through Small Tubes and Orifices,” Trans. ASME, 78(5), pp. 1071–1077.
Carstens,  M. R., and Roller,  J. E., 1959, “Boundary-Shear Stress in Unsteady Turbulent Pipe Flow,” J. Hydraul. Res., 85(HY2), pp. 67–81.
Ghidaoui, M. S., Zhao, M., Mc Innis, D. A., and Axworthy, D. H., 2004, “A Rewiew of Waterhammer Theory and Practice,” J. Applied Mech. Reviews (to be published).
Brunone, B., Golia, U. M., and Greco, M., 1991, “Some Remarks on the Momentum Equation for Fast Transients,” Proc., Int. Meeting on ‘Hydraulic Transients and Water Column Separation’, IAHR, E. Cabrera and M. A. Fanelli, eds., Valencia (E), pp. 201–209.
Brunone,  B., Golia,  U. M., and Greco,  M., 1995, “The Effects of Twodimensionality on Pipe Transients Modeling,” J. Hydraul. Eng., 121(12), pp. 906–912.
Brunone, B., and Golia, U. M., 1991, “Some Considerations on Velocity Profiles in Unsteady Pipe Flows,” Proc., Int. Conf. on ‘Entropy and Energy Dissipation in Water Resources’, V. P. Sing and M. Fiorentino, eds., Maratea (I), pp. 481–487.
Bergant, A., and Simpson, A. R., 1994, “Estimating Unsteady Friction in Transient Cavitating Pipe Flow,” Proc., 2nd Int. Conf. on ‘Water Pipeline Systems’, D. S. Miller, ed., Edinburgh (UK), bHrGroup, pp. 3–15.
Wylie, E. B., 1996, “Frictional Effects in Unsteady Turbulent Pipe Flow,” Applied Mechanics in the Americas, M. Rysz et al., eds., 5, University of Iowa, Iowa City, Iowa, pp. 29–34.
Bughazem, M. B., and Anderson, A., 1996, “Problems With Simple Models for Damping in Unsteady Flow,” Proc., 7th Int. Conf. on ‘Pressure Surges and Fluid Transients in Pipelines and Open Channels’, A. Boldy, ed., bHrGroup, pp. 537–548.
Bughazem, M. B., and Anderson, A., 2000, “Investigation of an Unsteady Friction Model for Waterhammer and Column Separation,” Proc., 8th Int. Conf. on ‘Pressure Surges’, A. Anderson, ed., The Hague (NL), bHrGroup, pp. 483–495.
Vitkosky, J. P., Lambert, M. F., Simpson, A. R., and Bergant, A., 2000, “Advances in Unsteady Friction Modelling in Transient Pipe Flow,” Proc., 8th Int. Conf. on ‘Pressure Surges’, A. Anderson, ed., The Hague (NL), bHrGroup, pp. 471–481.
Louriero, D., and Ramos, H., 2003, “A Modified Formulation for Estimating the Dissipative Effect of 1-D Transient Pipe Flow,” Proc., Int. Conf. on ‘Pumps, Electromechanical Devices and Systems Applied to Urban Water Management PEDS 2003’, Cabrera, E. and Cabrera, E., Jr., eds., Swets & Zeitlinger, Lisse, II, pp. 755–763.
Pezzinga,  G., 2000, “Evaluation of Unsteady Flow Resistances by Quasi-2D or 1D Models,” J. Hydraul. Eng., 126(10), pp. 778–785.
Bergant,  A., Simpson,  A. R., and Vitkovsky,  J., 2001, “Developments in Unsteady Pipe Flow Friction Modelling,” J. Hydraul. Res., 39(3), pp. 249–257.
Axworthy,  D. H., Ghidaoui,  M. S., and McInnis,  D. A., 2000, “Extended Thermodynamics Derivation of Energy Dissipation in Unsteady Pipe Flow,” J. Hydraul. Eng., 126(4), 276–287.
Vardy, A., and Browne, J., 1996, “On Turbulent, Unsteady, Smooth-Pipe Friction,” Proc., 7th Int. Conf. on ‘Pressure Surges and Fluid Transients in Pipelines and Open Channels’, A. Boldy, ed., bHrGroup, pp. 289–311.
Pezzinga,  G., 1999, “Quasi-2D Model for Unsteady Flow in Pipe Networks,” J. Hydraul. Eng., 125(7), pp. 676–685.
Bratland, O., 1986, “Frequency-Dependent Friction and Radial Kinetic Energy Variation in Transient Pipe Flow,” Proc., 5th Int. Conf. on ‘Pressure Surges’, BHRA, pp. 95–101.
Vardy,  A. E., and Hwang,  K., 1991, “A Characteristic Model of Transient Friction in Pipes,” J. Hydraul. Eng., 29(5), pp. 669–684.
Wylie, E. B., and Streeter, V. L., 1993, Fluid Transients in Systems, Prentice Hall, Englewood Cliffs, NJ.
Kurokawa,  J., and Morikawa,  M., 1986, “Accelerated and Decelerated Flows in a Circular Pipe,” Bull. JSME, 29(249), pp. 758–765.
Cocchi, G., 1988, “An Experiment on Unsteady-State Friction,” Proc., Accademia delle Scienze di Bologna, series XIV, V, pp. 203–210 (in Italian).
Shuy,  E. B., 1996, “Wall Shear Stress in Accelerating and Decelerating Turbulent Pipe Flows,” J. Hydraul. Res., 34(2), pp. 173–183.
Szymansky,  P., 1932, “Quelques solutions exactes des èquations de l’hydrodynamique du fluid visqueux dans le cas d’un tube cylindrique,” J. Math. Pures Appl., 97(11), pp. 67–107.
Das,  D., and Arakeri,  J. H., 2000, “Unsteady Laminar Duct Flow With a Given Volume Flow Rate Variation,” ASME J. Appl. Mech., 67, pp. 274–281.
Brunone,  B., Karney,  B. W., Mecarelli,  M., and Ferrante,  M., 2000, “Velocity Profiles and Unsteady Pipe Friction in Transient Flow,” J. Water Resour. Plan. Manage., 126(4), pp. 236–244.

Figures

Grahic Jump Location
Numerical experiment. Friction term at mid-length section given by the Zielke’s model and quasi 2D Vardy and Hwang’s one (copper pipe; T=0.14 s and N0=1134)
Grahic Jump Location
Numerical experiment. Pressure time-history given by the Zielke’s model and quasi 2D Vardy and Hwang’s one (copper pipe; T=0.14 s and N0=1134)
Grahic Jump Location
Numerical experiment. Pressure time-history at mid-length section given by quasi 2D Vardy and Hwang’s model and 1D one with: k=kVH and k=kP (copper pipe; T=0.14 s and N0=1134)
Grahic Jump Location
Numerical experiment. Decay coefficient, k, vs instantaneous Reynolds number, N, at mid-length section (copper pipe; T=0.14 s and N0=1134)
Grahic Jump Location
Behavior of local velocity field close to the wall for laminar decelerating flows
Grahic Jump Location
Numerical and experimental pressure time-histories at mid-length section (copper pipe; T=0.11 s and N0=815)
Grahic Jump Location
Numerical and experimental pressure time-histories at mid-length section (copper pipe; T=0.14 s and N0=1339)
Grahic Jump Location
Numerical and experimental pressure time-histories at mid-length section (polyethylene pipe; T=0.12 s and N0=2020)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In