Added Mass of an Oscillating Hemisphere at Very-Low and Very-High Frequencies

[+] Author and Article Information
Mario A. Storti, Jorge D’Elı́a

Centro Internacional de Métodos Computacionales en Ingenierı́a (CIMEC) INTEC, UNL-CONICET. Güemes 3450, 3000-Santa Fe, Argentina


e-mail: cimec@ceride.gov.ar

Telephone: +54 342 4556673; Fax: +54 342 4550944

J. Fluids Eng 126(6), 1048-1053 (Mar 11, 2005) (6 pages) doi:10.1115/1.1839932 History: Received October 15, 2003; Revised August 05, 2004; Online March 11, 2005
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Falnes,  J., and McIver,  P., 1985, “Surface Wave Interactions With System of Oscillating Bodies and Pressure Distributions,” Appl. Ocean. Res., 7(4), pp. 225–234.
Ohkusu, M., Advances in Marine Hydrodynamics, Computational Mechanics Publications, 1996.
Huang,  Y., and Sclavounos,  P. D., 1998, “Nonlinear Ship Motions,” J. Ship Res., 42(2), pp. 120–130.
Hulme,  A., 1985, “The Heave Added-Mass and Damping Coefficients of a Submerged Torus,” J. Fluid Mech., 155, pp. 511–530.
Lamb, H., Hydrodynamics, Dover, New York, 6th edition, 1993.
Nicholls,  F. W., 1924, “Vibration of Ships,” Trans RINA,66, pp. 141–163.
Lewis,  F. M., 1929, “The Inertia of the Water Surrounding a Vibrating Ship,” Trans. Soc. Nav. Arch,37, pp. 1–20.
Lloyd, A. R. J. M., Seakeeping. Ship Behavior in Rough Weather, Ellis Horwood Limited, Chichester, 1989.
Jennings,  A., 1985, “Added Mass for Fluid-Structure Vibration Problems,” Int. J. Numer. Methods Eng., 5, pp. 817–830.
Hulme,  A., 1982, “The Wave Forces Acting on a Floating Hemisphere Undergoing Forced Periodic Oscillations,” J. Fluid Mech., 121, pp. 443–463.
Ursell,  F., 1949, “On the Heave Motion of a Circular Cylinder on the Surface of a Fluid,” Q. J. Mech. Appl. Math., 2, pp. 218–231.
Grim,  O., 1953, “Berechnung der durch Schwingungen eines Schiffskoerpers Erzeugten Hydrodynamischen Kraefte,” Jahbuch der Schiffsbautechnischen Gesellshaft,47, pp. 277–299.
Tasai,  F., 1959, “On the Damping Force and Added Mass of Ships Heaving and Pitching,” J. Zosen Kiokai,105, pp. 47–56.
Porter, W. R., “Pressure Distributions, Added Mass and Damping Coefficients for Cylinders Oscillating in a Free Surface,” Technical Report, Report 82-16, University of California, Institute of Engineering Research, Berkeley, 1960.
Ogilvie,  T. F., 1963, “First and Second Order Forces on a Cylinder Submerged Under a Free Surface,” J. Fluid Mech., 16, pp. 451–472.
Frank, W., “Oscillation of Cylinders in or Below the Free Surface of Deep Fluids,” Technical report, Naval Ship Research and Development Center, 1967.
Havelock,  T. H., 1955, “Waves Due to a Floating Hemi-Sphere Making Periodic Heaving Oscillations,” Proc. R. Soc. London, Ser. A, 231, pp. 1–7.
Storti,  M., D’Elı́a,  J., Bonet,  R., Nigro,  N., and Idelsohn,  S., 2000, “The DNL Absorbing Boundary Condition. Applications to Wave Problems,” Comput. Methods Appl. Mech. Eng., 182(3–4), pp. 483–498.
Storti,  M., D’Elı́a,  J., and Idelsohn,  S., 1998, “Algebraic Discrete Non-Local (DNL) Absorbing Boundary Condition for the Ship Wave Resistance Problem,” J. Comput. Phys., 146(2), pp. 570–602.
Storti,  M., D’Elı́a,  J., and Idelsohn,  S., 1998, “Computing Ship Wave Resistance From Wave Amplitude With the dnl Absorbing Boundary Condition,” Commun. Numer. Methods Eng., 14, pp. 997–1012.
D’Elı́a,  J., Storti,  M., and Idelsohn,  S., 2000, “A Panel-Fourier Method for Free Surface Methods,” J. Fluids Eng., 122(2), June, pp. 309–317.
D’Elı́a,  J., Storti,  M., and Idelsohn,  S., 2000, “Iterative Solution of Panel Discretizations for Potential Flows the Modal/Multipolar Preconditioning,” Int. J. Numer. Methods Fluids, 32(1), pp. 1–27.
D’Elı́a,  J., Storti,  M., Oñate,  E., and Idelsohn,  S., 2002, “A Nonlinear Panel Method in the Time Domain for Seakeeping Flow Problems,” Int. J. Comput. Fluid Dyn., 16(4), pp. 263–275.
Newman, J. N., Marine Hydrodynamics, The MIT Press, Cambridge, 1977.
Ogilvie,  T. F., 1977, “Singular-Perturbation Problems in Ship Hydrodynamics,” Adv. Appl. Mech., 17, pp. 91–188.
Stoker, J. J., Water Waves, Interscience Publishers, New York, 1957.
Papanikolau,  A., 1985, “On the Integral-Equation-Methods for the Evaluation of Motions and Loads of Arbitrary Bodies in Waves,” Ingenieur-Archiv,55, pp. 17–29.
D’Elı́a, J., and Storti, M., “A Kelvin-Source Mixed Computation in Ship Hydrodynamics,” Technical report, CIMEC, 2000.
Landweber, L., Handbook of Fluid Dynamics, chapter Motion of Immersed and Floating Bodies. McGraw-Hill, New York, 1961.
Sierevogel, L., “Time-Domain Calculations of Ship Motions,” PhD thesis, Technische Universiteit Delft, 1998.
Prins, H. J., “Time-Domain Calculations of Drift Forces and Moments,” PhD thesis, Technische Universiteit Delft, 1995.
Korsmeyer,  F. T., and Sclavounos,  P. D., 1989, “The Large-Time Asymptotic Expansion of the Impulse Response Function for a Floating Body,” Appl. Ocean. Res., 11(2), pp. 75–88.
Liapis, S. J., “Time-Domain Analysis of Ship Motions,” PhD thesis, University of Michigan, 1986.
Ursell,  F., 1953, “Short Surface Waves Due to an Oscillatin Inmersed Body,” Proc. R. Soc. London, Ser. A, 220, pp. 90–103.
Davis,  A. M., 1971, “Short Surface Waves Due to an Oscillating Half-Inmersed Sphere,” Mathematika, 18, pp. 20–39.
Octave 2.1.33 General Public License, GNU project, i386-redhat-linux-gnu, 2001.


Grahic Jump Location
Sketch of the movement of an incompressible fluid in shiplike vibration due to a heave motion
Grahic Jump Location
Geometrical description of a seakeeping-like flow: Original problem (left) and extended to the upper plane (right)
Grahic Jump Location
Cartesian coordinates (x,y,z) and spherical ones (r,θ,φ)
Grahic Jump Location
The heave load h(θ,φ)=cos θ, with 0≤θ≤π/2
Grahic Jump Location
The surge load h(θ,φ)=sin φ sin θ, with 0≤φ<2π and 0≤θ<π/2
Grahic Jump Location
Symmetrical load extension h=|cos θ| for the heave-mode at very-low frequencies ω→0
Grahic Jump Location
Antisymmetrical load extension h=cos θ for the heave-mode at very-high frequencies ω→∞
Grahic Jump Location
The load extension h=sin φ sin θ for the surge-mode at Very Low Frequencies (VLF) (ω→0)
Grahic Jump Location
The load extension h=sin φ sin θ sign{cos θ} for the surge-mode at Very High Frequencies (VHF) (ω→∞)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In