0
TECHNICAL PAPERS

Three-Dimensional Vortex Method for Gas-Particle Two-Phase Compound Round Jet

[+] Author and Article Information
Tomomi Uchiyama

EcoTopia Research Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

Phone/Fax +81-52-789-5187

e-mail: uchiyama@info.human.nagoya-u.ac.jp

Akihito Fukase

Ebara Corporation, Haneda Asahi-cho, Ohta-ku, Tokyo 144-8510, Japan

J. Fluids Eng 127(1), 32-40 (Mar 22, 2005) (9 pages) doi:10.1115/1.1852490 History: Received December 30, 2003; Revised August 25, 2004; Online March 22, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.

References

Shuen, J-S., Solomon, A. S. P., Zhang, Q-F., and Faeth, G. M., 1983, “A theoretical and experimental study of turbulent particle-laden jets,” NASA, CR-168293.
Modarress,  D., Tan,  H., and Elghobashi,  S., 1984, “Two-component LDA measurement in a two-phase turbulent jet,” AIAA J., 22(5), pp. 624–630.
Fleckhaus,  D., Hishida,  K., and Maeda,  M., 1987, “Effect of laden solid particles on the turbulent flow structure of a round free jet,” Exp. Fluids, 5, pp. 323–333.
Elghobashi,  S., Abou-Arab,  T., Rizk,  M., and Mostafa,  A., 1984, “Prediction of the particle-laden jet with a two-equation turbulence model,” Int. J. Multiphase Flow, 10(6), pp. 697–710.
Shuen,  J-S., Solomon,  A. S. P., Zhang,  Q-F., and Faeth,  G. M., 1985, “Structure of particle-laden jets: measurements and predictions,” AIAA J., 23(3), pp. 396–404.
Mostafa,  A. A., and Mongia,  H. C., 1988, “On the interaction of particles and turbulent fluid flow,” Int. J. Heat Mass Transfer, 31(10), pp. 2063–2075.
Yuu,  S., Umekage,  S., and Tabuchi,  M., 1994, “Direct numerical simulation for three-dimensional gas-solid two-phase jet using two-way method and experimental verification,” Trans. Jpn. Soc. Mech. Eng., Ser. B, 60(572), pp. 1152–1160.
Yuu,  S., Ueno,  T., and Umekage,  T., 2001, “Numerical simulation of the high Reynolds number slit nozzle gas-particle jet using subgrid-scale coupling large eddy simulation,” Chem. Eng. Sci., 56, pp. 4293–4307.
Leonard,  A., 1980, “Vortex methods for flow simulation,” J. Comput. Phys., 37, pp. 289–335.
Knio,  O., and Ghoniem,  A. F., 1992, “Vortex simulation of a 3-dimensional reacting shear-layer with finite-rate kinetics,” AIAA J., 30, pp. 105–116.
Winckelmans,  G. S., and Leonard,  A., 1993, “Contribution to vortex particle methods for the computation of three-dimensional incompressible unsteady flows,” J. Comput. Phys., 109, pp. 247–273.
Cottet, G.-H., and Koumoutsakos, P. D., 2000, Vortex Method: Theory and Practice, Cambridge University Press, Cambridge.
Kamemoto, K., 2000, “On attractive features of advanced vortex methods and their subjects as a tool of Lagrangian large eddy simulation,” Proc. 4th Int. Conf. Hydrodynamics, Yokohama, Vol. 1, pp. 37–56.
Uchiyama,  T., and Naruse,  M., 2001, “A numerical method for gas-solid two-phase free turbulent flow using a vortex method,” Powder Technol., 119, pp. 206–214.
Uchiyama,  T., and Naruse,  M., 2002, “Numerical simulation of gas-particle two-phase mixing layer by vortex method,” Powder Technol., 125, pp. 111–121.
Uchiyama,  T., and Naruse,  M., 2003, “Numerical simulation of gas-particle two-phase jet by vortex method,” Powder Technol., 131, pp. 156–165.
Uchiyama,  T., and Yagami,  H., 2005, “Numerical analysis of gas-particle two-phase wake flow by vortex method,” Powder Technol., 149, pp. 112–120.
Uchiyama,  T., 2004, “Numerical analysis of particulate jet generated by free falling particles,” Powder Technol., 145, pp. 123–130.
Chung,  J. N., and Troutt,  T. R., 1988, “Simulation of particle dispersion in an axisymmetric jet,” J. Fluid Mech., 186, pp. 199–222.
Joia, I. A., Ory, E., and Perkins, R. J., 1998, “A discrete vortex model of particle laden jets,” Proc. 3rd Int. Conf. Multiphase Flow, Lyon (on CD-ROM).
Kida, T., Take, T., Toshima, M., and Kurata, M., 1999, “Pressure distribution on the ground by impinging two-dimensional jet due to a vortex method,” Proc. 3rd ASME-JSME Joint Fluid Eng. Conf., San Francisco, FEDSM99-6815 (on CD-ROM).
Kiya, M., Nagatomi, M., and Mochizuki, O., 1997, “Simulating an impulsively started round jets by a 3D vortex method,” Proc. Int. Conf. Fluid Eng., Tokyo, Vol. 1, pp. 135–140.
Izawa,  S., and Kiya,  M., 2000, “A turbulence model for the three-dimensional vortex blob method,” JSME Int. J., Ser. B, 43(3), pp. 434–442.
Uchiyama,  T., 2003, “Numerical prediction of the round jet in a co-flowing stream by three-dimensional vortex method,” Int. J. Turbo Jet Engines, 20, pp. 235–244.
Chein,  R., and Chung,  J. N., 1987, “Effects of vortex pairing on particle dispersion in turbulent shear flows,” Int. J. Multiphase Flow, 13(6), pp. 785–802.
Tang,  L., Wen.  F., Yang,  Y., Crowe,  C. T., Chung,  J. N., and Troutt,  T. R., 1992, “Self-organizing particle dispersion mechanism in a plane wake,” Phys. Fluids A, 4(10), pp. 2244–2251.
Wen,  F., Kamalu,  N., Chung,  J. N., Crowe,  C. T., and Troutt,  T. R., 1992, “Particle dispersion by vortex structures in plane mixing layers,” ASME J. Fluids Eng., 114, pp. 657–666.
Schiller,  L., and Naumann,  A. Z., 1933, “Úber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung,” Z. Vereines Deutscher Inge., 77, pp. 318–321.
Beale,  J. T., and Majda,  A., 1985, “High order vortex methods with explicit velocity kernels,” J. Comput. Phys., 58, pp. 188–208.
Mansfield,  J. R., Knio,  O. M., and Meneveau,  C., 1999, “Dynamic LES of colliding vortex rings using a 3D vortex method,” J. Comput. Phys., 152, pp. 305–345.
Leonard,  A., and Chua,  K., 1989, “Three-dimensional interactions of vortex tubes,” Phys. Fluids, 37, pp. 490–496.
Chorin,  A. J., 1973, “Numerical study of slightly viscous flow,” J. Fluid Mech., 57, pp. 785–796.
Degond,  P., and Mas-Gallic,  S., 1989, “The weighted particle method for convection-diffusion equations,” Math. Comput., 53, pp. 485–526.
Forstall,  W., and Shapiro,  A., 1950, “Momentum and mass transfer in coaxial gas jets,” ASME J. Appl. Mech., 17, pp. 399–408.
Takeuchi, S., Miyake, Y., and Kajishima, T., 1999, “On the numerical simulation of round jets of incompressible fluid,” Proc. 3rd ASME-JSME Joint Fluid Eng. Conf., San Francisco, FEDSM99-6957 (on CD-ROM).

Figures

Grahic Jump Location
Round nozzle and released vortex element
Grahic Jump Location
Configuration of flow field
Grahic Jump Location
Time variation for number of vortex elements
Grahic Jump Location
Instantaneous distribution of vortex element for air single-phase jet
Grahic Jump Location
Axial evolution of air velocity on centerline for single-phase jet
Grahic Jump Location
Radial profile of mean air velocity for single-phase jet
Grahic Jump Location
Distributions of particle and vortex element for M=0.27 at t*=220
Grahic Jump Location
Surface of constant magnitude for vorticity |ω|/|ω0|=0.4 at t*=220
Grahic Jump Location
Surfaces of constant magnitude for streamwise vorticity ωx/|ω0|=±0.04 at t*=220
Grahic Jump Location
Change of centerline velocity in axial direction
Grahic Jump Location
Radial profile of mean velocity
Grahic Jump Location
Axial component of rms velocity fluctuation for air
Grahic Jump Location
Radial component of rms velocity fluctuation for air
Grahic Jump Location
Distribution of rms velocity fluctuation for particle
Grahic Jump Location
Distribution of Reynolds shear stress

Tables

Errata

Discussions

Related

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In