0
TECHNICAL PAPERS

Energy Losses at Tees With Large Area Ratios

[+] Author and Article Information
Kenji Oka

Department of Mechanical Engineering, College of Engineering, Nihon University, Kōriyama, 963-8642, Japane-mail: okak@mech.ce.nihon-u.ac.jp

Hidesato Itō

3-5-13, Kuromatsu, Izumi-ku, Sendai, 981-8006, Japan

J. Fluids Eng 127(1), 110-116 (Mar 22, 2005) (7 pages) doi:10.1115/1.1852475 History: Received October 03, 2002; Revised August 17, 2004; Online March 22, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.

References

Vogel, G., 1926, “Untersuchungen über den Verlust in rechtwinkligen Rohrverzweigungen,” Mitteilungen des Hydraulischen Instituts der Technischen Hochschule München, 1 , pp. 75–90.
Vogel, G., 1928, “Untersuchungen über den Verlust in rechtwinkeligen Rohrverzweigungen,” Mitteilungen des Hydraulischen Instituts der Technischen Hochschule München, 2 , pp. 61–64.
Petermann, F., 1929, “Der Verlust in schiefwinkligen Rohrverzweigungen,” Mitteilungen des Hydraulischen Instituts der Technischen Hochschule München, 3 , pp. 98–117.
Kinne, E., 1931, “Beiträge zur Kenntnis der hydraulischen Verluste in Abzweigstücken,” Mitteilungen des Hydraulischen Instituts der Technischen Hochschule München, 4 , pp. 70–93.
McNown,  J. S., 1954, “Mechanics of Manifold Flow,” Trans. Am. Soc. Civ. Eng., 119, pp. 1103–1142.
Gardel, A., 1957, “Les Pertes de Charge dans les Écoulements au Travers de Branchements en Té,” Publication, No. 44, École Polytechnique de l’Université de Lausanne, Lausanne, Switzerland.
Blaisdell, F. W., and Manson, P. W., 1963, “Loss of Energy at Sharp-Edged Pipe Junctions in Water Conveyance Systems,” Technical Bulletin, No. 1283, U.S. Department of Agriculture, Washington, D.C.
Hosokawa, Y., and Takagi, S., 1966, “Energy Loss Caused by the Flow Through a Pipe Line Which Has a Branch Pipe Jutting Into the Main Pipe (in Japanese),” Reports of the Faculty of Engineering, Himeji Institute of Technology, 19A , pp. 106–113.
Miller, D. S., 1971, Internal Flow. A Guide to Losses in Pipe and Duct Systems, The British Hydromechanics Research Association, Cranfield, Bedford, UK, pp. 197–253.
Gardel, A., and Rechsteiner, G. F., 1971, “Les Pertes de Charge dans les Branchements en Té des Conduites de Section Circulaire,” Publication, No. 118, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Itō,  H., and Imai,  K., 1973, “Energy Losses at 90° Pipe Junctions,” J. Hydraul. Div., Am. Soc. Civ. Eng., 99, pp. 1353–1368.
Abou-Haidar,  N. I., and Dixon,  S. L., 1992, “Pressure Losses in Combining Subsonic Flows Through Branched Ducts,” ASME J. Turbomach., 114, pp. 264–270.
Abou-Haidar,  N. I., and Dixon,  S. L., 1994, “Measurement of Compressible Flow Pressure Losses in Wye-Junctions,” ASME J. Turbomach., 116, pp. 535–541.
Serre,  M., Odgaard,  A. J., and Elder,  R. A., 1994, “Energy Loss at Combining Pipe Junction,” J. Hydraul. Eng., 120, pp. 808–830.
Ramamurthy,  A. S., Zhu,  W., and Carballada,  B. L., 1996, “Dividing Rectangular Closed Conduit Flows,” J. Hydraul. Eng., 122, pp. 687–691.
Ramamurthy,  A. S., and Zhu,  W., 1997, “Combining Flows in 90° Junctions of Rectangular Closed Conduits,” J. Hydraul. Eng., 123, pp. 1012–1019.
Favre, H., 1937, “Sur les Lois Régissant le Mouvement des Fluides dans les Conduites en Charge avec Adduction Latérale,” Revue Universelle des Mines, Ser. 8, 13 , pp. 502–512.
Vazsonyi,  A., 1944, “Pressure Loss in Elbows and Duct Branches,” Trans. ASME,66, pp. 177–183.
Katz,  S., 1967, “Mechanical Potential Drops at a Fluid Branch,” ASME J. Basic Eng., 89, pp. 732–736.
Truckenbrodt, E., 1980, Fluidmechanik, Vol. 1, Springer-Verlag, Berlin, pp. 278–283.
Hager, W. H., 1984, “An Approximate Treatment of Flow in Branches and Bends,” Proceedings of the Institution of Mechanical Engineers, 198C , pp. 63–69.
Idelchik, I. E., (Translated by Malyavskaya, G. R.), 1994, Handbook of Hydraulic Resistance, 3rd ed., CRC Press, Boca Raton, pp. 413–501.
Miller, D. S., 1990, Internal Flow Systems, 2nd ed., BHRA (Information Services), The Fluid Engineering Center, Cranfield, Bedford, UK, pp. 303–361.
E.S.D.U., 1973a, “Pressure Losses in Three-Leg Pipe Junctions: Dividing Flows,” No. 73022, Engineering Sciences Data Unit, London.
E.S.D.U., 1973b, “Pressure Losses in Three-Leg Pipe Junctions: Combining Flows,” No. 73023, Engineering Sciences Data Unit, London.
Schlichting, H., (Translated by Kestin, J.), 1979, Boundary-Layer Theory, 7th ed., McGraw-Hill, New York, pp. 596–611.
ISO 5167-1, 2003, Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full—Part 1: General Principles and Requirements, International Organization for Standardization (ISO), Geneva, Switzerland, pp. 1–33.
ISO 5167-2, 2003, Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross-Section Conduits Running Full—Part 2: Orifice Plates, International Organization for Standardization (ISO), Geneva, Switzerland, pp. 1–28.
Richter, H., 1971, Rohrhydraulik, 5th ed., Springer, Berlin, pp. 138–139.
Coleman, H. W., and Steele, Jr., W. G., 1999, Experimentation and Uncertainty Analysis for Engineers, 2nd ed., Wiley, New York, pp. 202–234.
ISO, 1995, Guide to the Expression of Uncertainty in Measurement. Corrected and Reprinted 1995, International Organization for Standardization (ISO), Geneva, Switzerland, pp. 9–78.
Escobar,  J., 1954, “Discussion to ‘Mechanics of Manifold Flow,’ by McNown, J. S.,” Trans. Am. Soc. Civ. Eng., 119, pp. 1119–1123.
Sato,  Y., 1963, “Separating and Uniting Flows in Branch Pipes (in Japanese),” J. Jpn Soc. Mechanical Engineers,66, pp. 1347–1353.
Daily, J. W., and Harleman, D. R. F., 1966, Fluid Dynamics, Addison-Wesley, Reading, Massachusetts, pp. 314–319.
Street, R. L., Watters, G. Z., and Vennard, J. K., 1996, Elementary Fluid Mechanics, 7th ed., Wiley, New York, pp. 359–364.

Figures

Grahic Jump Location
Configurations of flow. Arrows indicate the direction of flow.
Grahic Jump Location
Arrangement of experimental apparatus in the case of counter-combining flow, where θ=45 deg–135 deg and d1=d2.
Grahic Jump Location
Loss coefficients for straight-through flow in tees. m=11.44: 1 Eq. (8), 2 Eq. (15), 3 θ=90 deg, m=111.
Grahic Jump Location
Loss coefficients for flow from the branch pipe into the main pipe of tees. m=11.44: 1 Eq. (10), 2 Eq. (13).
Grahic Jump Location
Loss coefficients for flow from the main pipe into the branch pipe of tees. m=11.44: 1 Eq. (12), 2 Eq. (11).
Grahic Jump Location
Power-loss coefficients for tees. m=11.44: Full lines are given by Eqs. (6) and (7) together with Eqs. (8) to (13).
Grahic Jump Location
Values of correction factors. (a) kc for Eq. (8). 1 Eq. (16); (b) kc(≈kd) for Eqs. (10) and (13); (c) kd(≈kc) for Eqs. (11) and (12). The values of the uncertainties for kc and kd are given in Table 1.
Grahic Jump Location
Loss coefficients for straight-through flow in tees. Comparison with other investigators: 1 Eq. (8), 2 Eq. (15), 3 θ=90 deg, m=111.
Grahic Jump Location
Loss coefficients for branch flow in tees. Comparison with other investigators: 1 Eq. (10), 2 Eq. (11).
Grahic Jump Location
Control volume for counter-combining flow in a tee.
Grahic Jump Location
Control volume for counter-dividing flow in a tee.
Grahic Jump Location
Control volume for straight-through flow in a dividing tee.
Grahic Jump Location
Comparison of experimental data with Eq. (14). 1 Eq. (14).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In