Zienkiewicz, O. C., and OňateE., 1991, “*Finite Elements Versus Finite Volumes. Is There a Choice?*” in Non Linear Computational Mechanics. State of the Art, P.Wriggers and W.Wagner eds., Springer, Berlin.

Versteeg, H. K., and Malalasekera, W., 1995, "*An Introduction to Computational Fluid Dynamics, the Finite Volume Method*", Longman, Loughborogh, England.

Oňate, E., Cervera, M., and Zienkiewicz, O. C., 1994, “A Finite Volume Format for Structural Mechanics,” Int. J. Numer. Methods Eng., 37 , pp. 181–201.

Thompson, J.F., Bharat, K.S., and Weatherill, N.P., editors, 1999, "*Handbook of Grid Generation*", CRC Press, New York.

Nayroles, B., Touzot, G., and Villon, P., 1992, “Generalizing the FEM: Diffuse Approximation and Diffuse Elements,” Comput. Mech., 10 , pp. 307–318.

Belytschko, T., Lu, Y., and Gu, L., 1994, “Element Free Galerkin Methods,” Int. J. Numer. Methods Eng., 37 , pp. 229–256.

Lu, Y. Y., Belytschko, T., and Gu, L., 1994, “A New Implementation of the Element Free Galerkin Method,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 113 , pp. 397–414.

Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., and Krysl, P., 1996, “Meshless Methods: An Overview and Recent Developments,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 139 , pp. 3–47.

Batina, J., 1993, “A Gridless Euler∕Navier Stokes Solution Algorithm for Complex Aircraft Applications,” AIAA 93-0333, Reno, NV.

Oňate, E., Idelsohn, S., Zienkiewicz, O. C., and Taylor, R., 1996, “A Finite Point Method in Computational Mechanics: Applications to Convective Transport and Fluid Flow,” Int. J. Numer. Methods Eng.

[CrossRef], 39 , pp. 3839–3866.

Oňate, E., Idelsohn, S., Zienkiewicz, O. C., Taylor, R. L., and Sacco, C., 1996, “A Stabilized Finite Point Method for Analysis of Fluid Mechanics Problems,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 139 , pp. 315–346.

Zhu, T., Zhang, T. D., and Atluri, S. N., 1998, “A Local Boundary Integral Equation (LBIE) Method in Computational Mechanics, and a Meshless Discretization Approach,” Comput. Mech., 21 , pp. 223–235.

Zhu, T., Zhang, T. D., and Atluri, S. N., 1998, “A Meshless Local Boundary Integral Equation (LBIE) Method for Solving Nonlinear Problems,” Comput. Mech., 22 , pp. 174–186.

Atluri, S. N., and Zhu, T., 1998, “A New Meshless Local Petrov-Galerkin (MLPG) Approach for Nonlinear Problems in Computer Modeling and Simulation,” Comput. Model. Simul. Eng., 3 , pp. 187–196.

Zhu, T., 1999, “A New Meshless Regular Local Boundary Integral Equation (MRLBIE) Approach,” Int. J. Numer. Methods Eng.

[CrossRef], 46 , pp. 1237–1252.

Atluri, S. N., and Cho, J. Y., 1999, “A Critical Assessment of the Truly Meshless Local Petrov-Galerkin (MLPG) and Local Boundary Integral Equation (LBIE) Methods,” Comput. Mech., 24 , pp. 348–372.

Atluri, S. N., and Zhu, T., 2000, “The Local Petrov-Galerkin (MLPG) Approach for Solving Problems in Elasto-Statics,” Comput. Mech., 25 , pp. 169–179.

Atluri, S. N., and Shen, S., 2002, "*The Meshless Local Petrov-Galerkin (MLPG) Method*", Tech. Science Press.

Atluri, S. N., 2004, "*The Meshless Method (MLPG) for Domain and Bie Discretizations*", Tech. Science Press.

De, S., and Bathe, K. J., 2000, “The Method of Finite Spheres” Comput. Mech., 25 , pp. 329–45.

Gu, Y. T., and Liu, G. R., 2001, “A Local Point Interpolation Method for Static and Dynamic Analysis of Thin Beams,” Comput. Methods Appl. Mech. Eng., 190 , pp. 5515–5528.

Liu, G. R., and Gu, Y. T., 2001, “A Local Radial Point Interpolation Method (LRPIM) for Free Vibration Analysis of 2-D Solids” J. Sound Vib., 246 (1), pp. 29–46.

Zhang, J. M., Yao, Z. H., and Li, H., 2002, “A Hybrid Boundary Node Method,” Int. J. Numer. Methods Eng., 53 , pp. 751–63.

Zhang, J., Yao, Z., and Tanaka, M., 2003, “The Meshless Regular Hybrid Boundary Node Method for 2D Linear Elasticity,” Eng. Anal. Boundary Elem., 27 , pp. 259–268.

Zhang, J., and Yao, Z., 2004, “The Regular Hybrid Boundary Node Method for Three-Dimensional Linear Elasticity,” Eng. Anal. Boundary Elem., 28 , pp. 525–534.

Melenk, J. M., and Babuška, I., 1996, “The Partition of Unity Finite Element Method: Basic Theory and Applications” Comput. Methods Appl. Mech. Eng.

[CrossRef], 139 , pp. 289–314.

De, S., and Bathe, K. J., 2001, “The Method of Finite Spheres with Improved Numerical Integration,” Comput. Struct., 79 , pp. 2183–2196.

Hoffman, K. A., and Chiang, S. T., 1993, "*Computational Fluid Dynamics for Engineers*", Engineering Education System, Wichita, Kan.

Gresho, P. M., and Sani, R. L., 2000, "*Incompressible Flow and the Finite Element Method, Volume 1: Advection-Diffusion*", Wiley, Ltd, Chichester, England.

Zienkiewiz, O. C., and Taylor, R. L., 1986 “*The Finite Element Method. Vol. 1: Basic Formulation and Linear Problems*,” 4th Edition, McGraw-Hill, London, England.

Greenberg, M. D., 1978, "*Foundations of Applied Mathematics*", Prentice-Hall, Englewood Cliffs, N.J.

Richtmyer, R. D., and Morton, K. W., 1967, "*Difference Methods for Initial-Value Problems*", Interscience Publishers, New York.

Hirsch, C., 1992, "*Numerical Computation of Internal and External Flows, Volume 1: Fundamentals of Numerical Discretization*", Wiley, New York.

Brooks, A. N., and Hughes, T. J. R., 1982, “Streamline Upwind∕Petrov-Galerkin Formulation for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 32 , pp. 199–258.

Lewis, R. W., Morgan, K., Thomas, H. R., and SeetharamuK. N., 1996, "*The Finite Element Method in Heat Transfer Analysis*", Wiley, Chichester, England.

Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., 1984, "*Computational Fluid Mechanics and Heat Transfer*", Hemisphere, New York.