Berger, M. J., and Colella, P., 1989, “Local Adaptive Mesh Refinement for Shock Hydrodynamics,” J. Comput. Phys.

[CrossRef]82 , pp. 64–68.

Mackerle, J., 2001, “Error Estimates and Adaptive Finite Element Methods: A Bibliography (1990 - 2000),” Eng. Comput.18 , pp. 802–914.

Daubechies, I., 1992, "*Ten Lectures on Wavelets*", SIAM, Philadelphia.

Liandrat, J., and Tchamitchian, P., 1990, Resolution of the 1D Regularized Burgers Equation Using a Spatial Wavelet Approximation, ICASE Report 90—83, NASA.

Fröhlich, J., and Schneider, K., 1994, “An Adaptive Wavelet Galerkin Algorithm for One-Dimensional and 2-Dimensional Flame Computations,” Eur. J. Mech. B/Fluids13 , pp. 439–471.

Vasilyev, O. V., and Paolucci, S., 1996, “Dynamically Adaptive Multilevel Wavelet Collocation Method for Solving Partial Differential Equations in a Finite Domain,” J. Comput. Phys.

[CrossRef]125 , pp. 498–512.

Vasilyev, O. V., and Paolucci, S., 1997, “A Fast Adaptive Wavelet Collocation Algorithm for Multidimensional PDEs,” J. Comput. Phys.

[CrossRef]138 , pp. 16–56.

Bertoluzza, S., 1996, “Adaptive Wavelet Collocation Method for the Solution of Burgers Equation,” Transp. Theory Stat. Phys.25 , pp. 339–359.

Rastigejev, Y., and Paolucci, S., 2003, “Wavelet Based Adaptive Multiresolution Computation of Viscous Reactive Flows,” *[Submitted]*.

Holmström, M., 1999. “Solving Hyperbolic PDEs Using Interpolating Wavelets,” SIAM J. Sci. Comput. (USA)

[CrossRef]21 , pp. 405–420.

Rastigejev, Y., 2002, Multiscale Computations with a Wavelet Adaptive Algorithm, Ph.D. thesis, University of Notre Dame, Notre Dame, IN.

Marchuck, G. I., Kuznetsov, Y., and Matsokin, A. M., 1986, “Fictitious Domain and Domain Decomposition Methods,” "*Sov. J. Num. Anal. Math. Model.*", 1 , pp. 3–35.

Glowinski, R., Pan, T. W., Hesla, T. I., Joseph, D. D., and Périaux, J., 2001, “A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow Past Moving Rigid Bodies: Application to Particulate Flow,” J. Comput. Phys.

[CrossRef], 169 , pp. 363–426.

Peskin, C. S., 1977, “Numerical Analysis of Blood Flow in Heart,” J. Comput. Phys.

[CrossRef]25 , pp. 220–252.

Beyer, R. P., 1992. “A Computational Model of the Cochlea Using the Immersed Boundary Method,” J. Comput. Phys.

[CrossRef]98 , pp. 145–162.

Goldstein, D., Handler, R., and Sirovich, L., 1993, “Modeling a No-Slip Flow Boundary With an External Force Field,” J. Comput. Phys.

[CrossRef]105 , pp. 354–366.

Angot, P., Bruneau, C.-H., and Fabrie, P., 1999, “A Penalization Method to Take Into Account Obstacles in Incompressible Viscous Flows,” Numer. Math.

[CrossRef]81 , pp. 497–520.

Beyer, R. P., and Leveque, R. J., 1992, “Analysis of a One-Dimensional Model for the Immersed Boundary Method,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.

[CrossRef]29 , pp. 332–364.

Khadra, K., Angot, P., Parneix, S., and Caltagirone, J.-P., 2000, “Fictitious Domain Approach for Numerical Modeling of Navier-Stokes Equations,” Int. J. Numer. Methods Fluids

[CrossRef]34 , pp. 651–684.

Donoho, D., 1992, Interpolating Wavelet Transform, Report, Dep. of Statistics, Stanford University.

Deslauriers, G., and Dubuc, S., 1989, “Symmetric Iterative Interpolation Processes,” Constructive Approx.

[CrossRef]5 , pp. 49–68.

Saito, N., and Beylkin, G., 1993, “Multiresolution Representations Using the Auto-Correlation Functions of Compactly Supported wavelets,” IEEE Trans. Signal Process.

[CrossRef]41 , pp. 3584–3590.

Bertoluzza, S., 1997, “An Adaptive Collocation Method Based on Interpolating Wavelets,” in "*Multiscale Wavelet Methods for Partial Differential Equations*", W.D.et al. , eds., Vol. 6 of Wavelet Analysis and Its Applications , Academic, New York, pp. 109–135.

Dahmen, W., 1997, “Wavelet and Multiscale Methods for Operator Equations,” Acta Numerica

[CrossRef]6 , pp. 55–228.

Jameson, L., 1998, “A Wavelet-Optimized, Very High Order Numerical Method,” SIAM J. Sci. Comput. (USA)

[CrossRef]19 , pp. 1980–2013.

Bertoluzza, S., 1995, “Adaptive Wavelet Collocation for the Solution of Steady-State Equations,” in Wavelet Applications II: April 17-21, Orlando, Proc. SPIE2491 , pp. 947–956.

Kim, J., and Moin, P., 1985, “Application of a Fractional-Step Method to Incompressible Navier-Stokes Equation,” J. Comput. Phys.

[CrossRef]59 , pp. 308–323.

Gresho, P. M., 1990, “On the Theory of Semi-Implicit Projection Methods for Viscous Incompressible Flow and Its Implementation Via a Finite Element Method That Also Introduces a Nearly Consistent Mass Matrix Part I: Theory,” Int. J. Numer. Methods Fluids11 , pp. 587–620.

Timmermans, L. J., Minev, P. D., and Van De Vosse, F. N., 1996, “An Approximate Projection Scheme for Incompressible Flow Using Spectral Elements,” Int. J. Numer. Methods Fluids

[CrossRef]22 , pp. 673–688.

Jin, G., and Braza, M., 1993, “A Nonreflecting Outlet Boundary Condition for Incompressible Unsteady Navier-Stokes Calculations,” J. Comput. Phys.

[CrossRef], 107 , pp. 239–253.

Zdravkovich, M. M., 1977, “Review of Flow Interference Between Two Circular Cylinders in Various Arrangements,” ASME J. Fluids Eng.99 , pp. 618–633.

Griebel, M., Dornseifer, T., and Neunhoeffer, T., 1998, "*Numerical Simulation in Fluid Dynamics: A Practical Introduction*", SIAM, Philadelphia, PA.

Shen, J., 1991, “Hopf-Bifucation of the Unsteady Regularized Driven Cavity Flow,” J. Comput. Phys.

[CrossRef]95 , pp. 228–245.

Botella, O., and Peyret, R., 1998, “Benchmark Spectral Results on the Lid-Driven Cavity Flow,” Comput. Fluids

[CrossRef]27 , pp. 421–433.

Ghia, U., Ghia, K. N., and Shin, C. T., 1982, “High-Re Solutions for Incompressible Flow Using Navier-Stokes Equations and a Multigrid Method,” J. Comput. Phys.

[CrossRef], 48 , pp. 387-411.

Sani, R. L., and Gresho, P. M., 1994, “Résumé and Remarks on the Open Boundary Condition Minisymposium,” Int. J. Numer. Methods Fluids18 , pp. 983–1008.

Ol’shanskii, M. A., and Staroverov, V. M., 2000, “On Simulation of Outflow Boundary Conditions in Finite Difference Calculations for Incompressible Fluid,” Int. J. Numer. Methods Fluids, 33 , pp. 449–534.

Meneghini, J. R., Saltara, F., Siqueira, C. L., and Ferrari, J. A., 2001, “Numerical Simulation of Flow Interference Between Two Cylinders in Tandem and Side-By-Side Arrangements,” J. Fluids Struct.

[CrossRef]15 , pp. 327–350.