Metzner, A. B. and Park, M. G., 1964, “Turbulent flow characteristics of viscoelastic fluids,” J. Fluid Mech., 20 , pp. 291–303.

Lumley, J. L., 1969, “Drag reduction by additives,” Annu. Rev. Fluid Mech.

[CrossRef], 1 , pp. 367–384.

Lumley, J. L., 1973, “Drag reduction in turbulent flow by polymer additives,” J. Polym. Sci. Macromol. Rev., 7 , pp. 290–363.

Virk, P. S., 1975, “Drag reduction fundamentals,” AIChE J.

[CrossRef], 21 , pp. 625–656.

Berman, N. S., 1978, “Drag reduction by polymers,” Annu. Rev. Fluid Mech.

[CrossRef], 10 , pp. 47–64.

Tabor, M., and de Gennes, P. G., 1986, “A cascade theory of drag reduction,” Europhys. Lett., 2 , pp. 519–522.

Ryskin, G., 1987, “Turbulent drag reduction by polymers: a quantitative theory,” Phys. Rev. Lett.

[CrossRef], 59 , pp. 2059–2062.

Thirumalai, D., and Bhattacharjee, J. K., 1996, “Polymer-induced drag reduction in turbulent flows,” Phys. Rev. E

[CrossRef], 53 , pp. 546–551.

Sreenivasan, K. R., and White, C. M., 2000, “The onset of drag reduction by dilute polymer additives and the maximum drag reduction asymptote,” J. Fluid Mech.

[CrossRef], 409 , pp. 149–164.

Rudd, M. J., 1972, “Velocity measurements with a laser-Doppler meter on the turbulent flow of a dilute polymer solution,” J. Fluid Mech., 51 , pp. 673–685.

Logan, S. E., 1972, “Laser velocimeter measurements of Reynolds stress in dilute polymer solutions,” AIAA J., 10 , pp. 962–964.

Reischman, M. A., and Tiederman, W. G., 1975, “Laser-Doppler anemometer measurements in drag reduction g channel flow,” J. Fluid Mech., 70 , pp. 369–392.

Luchik, T. S., and Tiederman, W. G., 1988, “Turbulent structure in low-concentration drag-reducing channel flow,” J. Fluid Mech., 198 , pp. 241–263.

Walker, D. T., and Tiederman, W. G., 1990, “Turbulent structure in a channel flow with polymer injection at the wall,” J. Fluid Mech., 204 , pp. 377–403.

Willmarth, W. W., Wei, T. and Lee, O., 1987, “Laser anemometer measurements of Reynolds stress in a turbulent channel flow with drag reducing polymer additives,” Phys. Fluids

[CrossRef], 30 , pp. 933–935.

Wei, T., and Willmarth, W. W., 1992, “Modifying turbulent structure with drag-reducing polymer additives in turbulent channel flows,” J. Fluid Mech., 245 , pp. 619–641.

Warholic, M. D., Massah, H., and Hanratty, T. J., 1999, “Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing,” Exp. Fluids

[CrossRef], 27 , pp. 461–472.

den Toonder, J. M., Hulsen, M. A., Kuiken, G. D., and Nieuwstadt, F., 1997, “Drag reduction by polymer additives in turbulent pipe flow: numerical and laboratory experiments,” J. Fluid Mech.

[CrossRef], 337 , pp. 193–231.

Sureshkumar, R., Beris, A. N., and Handler, R. A., 1997, “Direct numerical simulations of turbulent channel flow of a polymer solution,” Phys. Fluids

[CrossRef], 9 , pp. 743–755.

Dimitropoulos, C. D., Sureshkumar, R., and Beris, A. N., 1998, “Direct numerical simulation of viscoelastic turbulent channel exhibiting drag reduction: effect of the variation of rheological parameters,” J. Non-Newtonian Fluid Mech.

[CrossRef], 79 , pp. 433–468.

Sibilla, S., and Baron, A., 2002, “Polymer stress statistics in the near-wall turbulent flow of a drag-reducing solution,” Phys. Fluids

[CrossRef], 14 , pp. 1123–1136.

Angelis, E. D., Casciola, C. M., and Piva, R., 2002, “DNS of wall turbulence: dilute polymers and self-sustaining mechanisms,” Comput. Fluids

[CrossRef], 31 , pp. 495–507.

Dubief, Y., White, C. M., Terrapon, V. E., Shaqfeh, E. S., Moin, P., and Lele, S. K., 2004, “On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows,” J. Fluid Mech.

[CrossRef], 514 , pp. 271–280.

Jovanović, J., 2004, "*The Statistical Dynamics of Turbulence*", Springer-Verlag, Berlin.

Jovanović, J., and Hillerbrand, R., 2005, “On peculiar properties of the velocity fluctuations in wall-bounded flows,” J. Therm. Sci., 9 , pp. 3–12.

Lumley, J. L., and Newman, G., 1977, “The return to isotropy of homogeneous turbulence,” J. Fluid Mech., 82 , pp. 161–178.

Lumley, J. L., 1978, “Computational modeling of turbulent flows,” Adv. Appl. Mech., 18 , pp. 123–176.

Kim, J., Moin, P., and Moser, R., 1987, “Turbulence statistics in a fully developed channel flow at low Reynolds numbers,” J. Fluid Mech., 177 , pp. 133–166.

Antonia, R. A., Teitel, M., Kim, J., and Browne, L. W., 1992, “Low-Reynolds-number effects in a fully developed turbulent channel flow,” J. Fluid Mech., 236 , pp. 579–605.

Moser, R. D., Kim, J., and Mansour, N. N., 1999, “Direct numerical simulation of turbulent channel flow up to Reτ=590,” Phys. Fluids

[CrossRef], 11 , pp. 943–945.

Gilbert, N., and Kleiser, L., 1991, “Turbulence model testing with the aid of direct numerical simulation results,” "*Proc. Eighth Symp. on Turbulent Shear Flows*", Munich, pp. 26.1.1–26.1.6.

Horiuti, K., 1992, “Establishment of the direct numerical simulation data base of turbulent transport phenomena,” Ministry of Education, Science and Culture Japan, Co-operative Research No. 012302043,

http://www.thtlab.t.u-tokyo.ac.jp/.

Kuroda, A., Kasagi, N., and Hirata, M., 1993, “Direct numerical simulation of the turbulent plane Couette-Poiseulle flows: effect of mean shear on the near wall turbulence structures,” "

*Proc. Ninth Symp. on Turbulent Shear Flows*", Kyoto, pp. 8.4.1-8.4.6,

http://www.thtlab.t.u-tokyo.ac.jp/.

Jovanović, J., Hillerbrand, R., and Pashtrapanska, M., 2001, “Mit statistischer DNS-Datenanalyse der Enstehung von Turbulenz auf der Spur,” KONWIHR Q.31 , pp. 6–8.

Schenck, T., and Jovanović, J., 2002, “Measurements of the instantaneous velocity gradients in plane and axisymmetric wake flows.” ASME J. Fluids Eng.

[CrossRef], 124 , pp. 143–153.

Antonia, R. A., Kim, J., and Browne, L. W., 1991, “Some characteristics of small-scale turbulence in a turbulent duct flow,” J. Fluid Mech., 233 , pp. 369–388.

Chou, P. Y., 1945, “On the velocity correlation and the solution of the equation of turbulent fluctuation,” Q. Appl. Math., 3 , pp. 38–54.

Kolovandin, B. A., and Vatutin, I. A., 1969, “On statistical theory of non-uniform turbulence,” Int. J. Heat Mass Transfer, Herceg-Novi, Yugoslavia.

Jovanović, J., Otić, I., and Bradshaw, P., 2003, “On the anisotropy axisymmetric strained turbulence in the dissipation range,” ASME J. Fluids Eng.

[CrossRef], 125 , pp. 1–13.

Monin, A. S., and Yaglom, A. M., 1987, "*The Statistical Fluid Mechanics*", Vol. 1 , MIT Press, Cambridge, MA.

George, W. K., and Hussein, H. J., 1991, “Locally axisymmetric turbulence,” J. Fluid Mech., 233 , pp. 1–23.

Jovanović, J., Ye, Q.-Y., and Durst, F., 1995, “Statistical interpretation of the turbulent dissipation rate in wall-bounded flows,” J. Fluid Mech., 293 , pp. 321–347.

Durst, F., Jovanović, J., and Sender, J., 1995, “LDA measurements in the near-wall region of a turbulent pipe flow,” J. Fluid Mech., 295 , pp. 305–335.

Fischer, M., Jovanović, J., and Durst, F., 2001, “Reynolds number effects in the near-wall region of turbulent channel flows,” Phys. Fluids

[CrossRef], 13 , pp. 1755–1767.

Durst, F., Hass, R., Interhal, W., and Keck, T., 1982, “Polymerwirkung in Strömungen-Mechanismen und praktische Anwendungen,” Chem.-Ing.-Tech., 54 , pp. 213–221.

Jovanović, J., and Pashtrapanska, M., 2005, “On the criterion for the determination transition onset and breakdown to turbulence in wall-bounded flows,” ASME J. Fluids Eng.

[CrossRef], 126 , pp. 626–633

Kolmogorov, A. N., 1941, “Local structure of turbulence in an incompressible fluid at very high Reynolds numbers,” Dokl. Akad. Nauk SSSR, 30 , 299–303.

Sreenivasan, K. R., 1984, “On the scaling of the turbulence energy dissipation rate,” Phys. Fluids

[CrossRef], 27 , pp. 1048–1051.

Hinze, J. O., 1975, "*Turbulence*", 2nd ed., McGraw-Hill, New York.

Rotta, J., 1951, Statistische Theorie nichthomogener Turbulenz,” Z. Phys.129 , pp. 547–572.

Batchelor, G. K., and Townsend, A. A., 1947, “Decay of vorticity in isotropic turbulence,” Proc. R. Soc. London, Ser. A, 190 , p. 534.

Kuo, A. Y., and Corrsin, S., 1971, “Experiments on internal intermittency and fine-structure distribution functions in fully turbulent fluid,” J. Fluid Mech., 50 , pp. 285–319.

Tilli, M., Maaranen, J., Timonen, J., Kataja, M., and Korppi-Tommola, J., 2003, “Effect mechanisms of DR molecules,” Technical Report, University of Jyväskylä, Finland.

Durst, F., Fischer, M., Jovanović, J., and Kikura, H., 1998, “Methods to set up and investigate low Reynolds number, fully developed turbulent plane channel flows, ASME J. Fluids Eng., 120 , pp. 496–503.

Mansour, N. N., Moser, R. D., and Kim, J., 1998, “Fully developed turbulent channel flow simulations,” in AGARD Advisory Report 345, pp. 119–121.

Eggels, J. G., Unger, F., Weiss, M. H., Westerweel, J., Adrian, R. J., Friedrich, R., and Nieuwstadt, F. T., 1994, “Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment,” J. Fluid Mech., 268 , pp. 175–209.

Lammers, P., 2004, “Direct numerical simulations of wall-bounded flows at low Reynolds numbers using the lattice Boltzmann method, Ph.D. thesis, Friedrich-Alexander University Erlangen-Nuremberg, Germany, pp. 47–72.

Koskinen, K. K., 2004, “On investigating turbulent reactive flows: case studies of combustion and drag reduction by polymer additives,” ongoing Ph.D. thesis, Tampere University of Technology, Tampere, Finland.