Goswami, A., and Parpia, I. H., 1991, “Grid Restructuring for Moving Boundaries,” AIAA Paper No. 91-1589-CP.

Trepanier, J. Y., Reggio, M., Paraschiviou, M., and Camarero, R., 1992, “Unsteady Euler Solution for Arbitrary Moving Bodies and Boundaries,” AIAA Paper No. 92-0051-1992.

Batina, J. T., 1990, “Unsteady Euler Airfoil Solutions Using Unstructured Dynamic Meshes,” AIAA J., 28 (8), pp. 1381–1388.

Pirzadeh, S. Z., 1999, “An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing and Grid Movement,” 14th AIAA, AIAA Paper No. 99-3255.

Batina, J. T., 1991, “Unsteady Euler Algorithm with Unstructured Dynamic Mesh for Complex Airfoil Aerodynamic Analysis,” AIAA J., 29 (3), pp. 327–333.

Tsai, H. M., Wong, A. S. F., Cai, J., Zhu, Y., and Liu, F., 2001, “Unsteady Flow Calculations with a Parallel Multi-block Moving Mesh Algorithm,” AIAA J., 39 (6), pp. 1021–1029.

Jahangirian, A., and Hadidoolabi, M., 2004, “An Implicit Solution of the Unsteady Navier-Stokes Equations on Unstructured Moving Grids,” *24th International Congress of the Aeronautical Science*, ICAS, Yokohama, Japan.

Hase, J. E., Anderson, D. A., and Parpia, I. H., 1991, “A Delaunay Triangulation Method and Euler Solver for Bodies in Relative Motion,” AIAA Paper No. 91-1590-CP.

Zheng, Y., Lewis, R. W., and Gethin, D. T., 1996, “Three-Dimensional Unstructured Mesh Generation Part 1-3,” Comput. Methods Appl. Mech. Eng., 134 , pp. 249–310.

Formaggia, L., Peraire, J., and Morgan, K., 1988, “Simulation of a Store Separation Using the Finite Element Method,” J. Turbomach., 12 , pp. 175–181.

Steger, J. L., Dougherty, F. C., and Benek, J. A., 1983, *A Chimera Grid Scheme*, in Advances in Grid Generation, American Society of Mechanical Engineers, FED, New York, Vol. 5 , pp. 59–69.

Benek, J. A., Buning, P. G., and Steger, J. L., 1985, “A 3-D Chimera Grid Embedding Technique,” AIAA Paper No. 85-1523.

Nakahashi, K., Togashi, F., and Sharov, D., 2000, “Intergrid-Boundary Definition Method for Overset Unstructured Grid Approach,” AIAA J., 38 (11), pp. 2077–2084.

Kallinderis, Y., Khawaja, A., and Mc-Morris, H., 1996, “Hybrid Prismatic/Tetrahedral Grid Generation for Complex Geometries,” AIAA J., 34 , pp. 291–298.

Coirier, W. J., and Jorgenson, P. C. E., 1996, “A Mixed Volume Grid Approach for the Euler and Navier-Stokes Equations,” AIAA Paper No. 96-0762.

Karman, S. L., 1995, “SPLITFLOW: A 3D Unstructured Cartesian/Prismatic Grid CFD Code for Complete Geometries,” AIAA Paper No. 95-0343.

Zhang, L. P., Zhang, H. X., and Gao, S. C., 1997, “A Cartesian/Unstructured Hybrid Grid Solver and its Applications to 2D/3D Complex Inviscid Flow Fields,” "*Proceedings of the 7th International Symposium on CFD*", Beijing, China, pp. 347–352.

Zhang, L. P., Yang, Y. J., and Zhang, H. X., 2000, “Numerical Simulations of 3D Inviscid/Viscous Flow Fields on Cartesian/Unstructured/Prismatic Hybrid Grids,” "*Proceedings of the 4th Asian CFD Conference*", Mianyang, Sichuan, China.

Murman, S., Aftosmis, M., and Berger, M., 2003, “Implicit Approaches for Moving Boundaries in a 3D Cartesian Method,” AIAA Paper No. 2003-1119.

Zhang, L. P., and Wang, Z. J., 2004, “A Block LU-SGS Implicit Dual Time-stepping Algorithm for Hybrid Dynamic Meshes,” Comput. Fluids, 33 , pp. 891–916.

Tezduyar, T. E., Behr, M., Mittal, S., and Liou, J., 1992, “A New Strategy for Finite Element Computations Involving Moving Boundaries and Interfaces—The Deforming-Spatial-Domain/Space-Time Procedure Part II: Computation of Free-Surface Flows, Two-Liquid Flows, and Flows with Drifting Cylinders,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 94 , pp. 353–371.

Mittal, S., and Tezduyar, T. E., 1992, “A Finite Element Study of Incompressible Flows Past Oscillating Cylinders and Airfoils,” Int. J. Numer. Methods Fluids

[CrossRef], 15 , pp. 1073–1118.

Behr, M., and Tezduyar, T., 1999, “The Shear-Slip Mesh Update Method,” Comput. Methods Appl. Mech. Eng., 174 , pp. 261–274.

Behr, M., and Tezduyar, T., 2001, “Shear-Slip Mesh Update in 3D Computation of Complex Flow Problems with Rotating Mechanical Components,” Comput. Methods Appl. Mech. Eng., 190 , pp. 3189–3200.

Lin, C. Q., and Pahlke, K., 1994, “Numerical Solution of Euler Equations for Aerofoils in Arbitrary Unsteady Motion,” Aeronaut. J., June/July, pp. 207–214.

Truilo, J. G., and Trigger, K. R., 1961, “Numerical Solution of the One-Dimensional Hydrodynamic Equations in an Arbitrary Time-Dependent Coordinate System,” Univ. of California, Lawrence Radiation Lab. Report UCLR-6522.

Thomas, P. D., and Lombard, C. K., 1978, “The Geometric Conservation Law—A Link Between Finite-Difference and Finite-Volume Methods of Flow Computation on Moving Grids,” AIAA Paper No. 78-1208.

Thomas, P. D., and Lombard, C. K., 1979, “Geometric Conservation Laws and its Application to Flow Computation on Moving Grids,” AIAA J., 17 , pp. 1030–1037.

Zhang, H., Reggio, M., Trepanier, J. Y., and Camarero, R., 1993, “Descrete Form of the GCL for moving Meshes and its Implementation in CFD Schemes,” Comput. Fluids, 22 (1), pp. 9–23.

Karimian, S. M. H., Amoli, A., and Mazaheri, K., 2002, “Control-Volume Finite-Element Method for the Solution of 2D Euler Equations on Unstructured Moving Grids,” Iranian J. Sci. Technol., Trans. B, 26 (B3), pp. 465–476.

Roe, P. L., 1981, “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” J. Comput. Phys.

[CrossRef], 43 , pp. 357–372.

Liou, M., and Steffen, C. J., 1993, “A New Flux Splitting Scheme,” J. Comput. Phys.

[CrossRef], 107 , pp. 23–39.

Karimian, S. M. H., and Schneider, G. E., 1995, “Pressure-Based Control-Volume Finite-Element Method for Flow at All Speeds,” AIAA J., 33 (11), pp. 1611–1618.

Compendium of Unsteady Aerodynamic Measurements, Report No. AGARD-R-702, 1982.

Gaitonde, A. L., and Fiddes, S. P., 1995, “A Comparison of a Cell-Centre Method and a Cell-Vertex Method for the Solution of Two-dimensional Unsteady Euler Equations on a Moving Grid,” Am. Antiq., 209 , pp. 203–213.