Tuckerman, D. B., and Pease, R. F., 1981, “High-Performance Heat Sinking for VLSI,” IEEE Electron Device Lett., 2 , pp. 126–129.

Henning, A. K., 1998, “Microfluidic MEMS,” in "*IEEE Aerospace Conference*", p. 4.906, Snowmass, CO, March.

Lipman, J., 1999, “Microfluidics Puts Big Labs on Small Chips,” EDN Mag., pp. 79–86, December.

Peng, X. F., and Peterson, G. P., 1996, “Convective Heat Transfer and Fluid Flow Friction for Water Flow in Microchannel Structures,” Int. J. Heat Mass Transfer

[CrossRef], 39 , pp. 2599–2608.

Peng, X. F., and Peterson, G. P., 1996, “Forced Convection Heat Transfer of Single-Phase Binary Mixtures Through Microchannels,” Exp. Therm. Fluid Sci., 12 , pp. 98–104.

Mo, H. L., Zhou, Y. X., Zhu, T. Y., and Guo, T. W., 2004, “Forced Convection of Low Temperature Nitrogen Gas in Rectangular Channels With Small Aspect Ratio,” Cryogenics, 44 , pp. 301–307.

Pfund, D., Rector, D., Shekarriz, A., Popescu, A., and Welty, J., 2000, “Pressure Drop Measurements in a Microchannel,” Fluid Mech. Transp. Phenom., 46 (8), pp. 1496–1507.

Wu, P. Y., and Little, W. A., 1983, “Measurement of Friction Factor for Flow of Gases in Very Fine Channels Used for Micro-Miniature Joule-Thompson Refrigerators,” Cryogenics

[CrossRef], 23 , pp. 273–277.

Wu, P. Y., and Little, W. A., 1984, “Measurement of the Heat Transfer Characteristics of Gas Flow in Fine Channel Heat Exchangers Used for Microminiature Refrigerators,” Cryogenics, 24 , pp. 415–420.

Qu, W., Mala, G. M., and Li, D., 2000, “Pressure-Driven Water Flows in Trapezoidal Silicon Microchannels,” Int. J. Heat Mass Transfer

[CrossRef], 43 , pp. 353–364.

Guo, Z. Y., and Li, Z. X., 2003, “Size Effect on Microscale Single-Phase Flow and Heat Transfer,” Int. J. Heat Mass Transfer

[CrossRef], 46 , pp. 149–159.

Guo, Z. Y., and Li, Z. X., 2003, “Size Effect on Single-Phase Channel Flow and Heat Transfer at Microscale,” Int. J. Heat Fluid Flow, 24 , pp. 284–298.

Sabry, M. N., 2000, “Scale Effects on Fluid Flow and Heat Transfer in Microchannels,” IEEE Trans. Compon. Packag. Technol., 23 (3), pp. 562–567.

Toh, K. C., Chen, X. Y., and Chai, J. C., 2002, “Numerical Computation of Fluid Flow and Heat Transfer in Microchannels,” Int. J. Heat Mass Transfer

[CrossRef], 45 , pp. 5133–5141.

Tunc, G., and Bayazitoglu, Y., 2002, “Heat Transfer in Rectangular Microchannels,” Int. J. Heat Mass Transfer, 45 , pp. 765–773.

Koo, J., and Kleinstreuer, C., 2003, “Liquid Flow in Microchannels: Experimental Observations and Computational Analyses of Microfluidics Effects,” J. Micromech. Microeng.

[CrossRef], 13 , pp. 568–579.

Chen, C. S., and Kuo, W. J., 2004, “Numerical Study of Compressible Turbulent Flow in Microtubes,” Numer. Heat Transfer, Part A, 45 , pp. 85–99.

Hegab, H. E., Bari, A., and Ameel, T., 2002, “Friction and Convection Studies of R-134a in Microchannels Within the Transition and Turbulent Flow Regimes,” Exp. Heat Transfer, 15 , pp. 245–259.

Hegab, H. E., Bari, A., and Ameel, T. A., 2001, “Experimental Investigation of Flow and Heat Transfer Characteristics of R-134a in Microchannels,” Proc. SPIE, 4560 , pp. 117–125.

Wu, H. Y., and Cheng, P., 2003, “Friction Factors in Smooth Trapezoidal Silicon Microchannels With Different Aspect Ratios,” Int. J. Heat Mass Transfer

[CrossRef], 46 , pp. 2519–2525.

Baviere, R., Ayela, F., Le Person, S., and Favre-Marinet, M., 2004, “An Experimental Study of Water Flow in Smooth and Rough Rectangular Microchannels,” in "*Second International Conference on Microchannels and Minichannels (ICMM2004)*", Rochester, New York, June, pp. 221–228.

Santiago, J. G., Wereley, S. T., Meinhart, C. D., Beebe, D. J., and Adrian, R. J., 1998, “A Particle Image Velocimetry System for Microfluidics,” Exp. Fluids

[CrossRef], 25 , pp. 316–319.

Meinhart, C. D., Wereley, S. T., and Santiago, J. G., 1999, “PIV Measurements of a Microchannel Flow,” Exp. Fluids

[CrossRef], 27 , pp. 414–419.

Meinhart, C. D., Wereley, S. T., and Gray, M. H. B., 2000, “Volume Illumination for Two-Dimensional Particle Image Velocimetry,” Meas. Sci. Technol.

[CrossRef], 11 (6), pp. 809–814.

Olsen, M. G., and Adrian, R. J., 2000, “Out-of-Focus Effects on Particle Image Visibility and Correlation in Microscopic Particle Image Velocimetry,” Exp. Fluids

[CrossRef], 29 , pp. S166–S174.

Olsen, M. G., and Adrian, R. J., 2000, “Brownian Motion and Correlation in Particle Image Velocimetry,” Opt. Laser Technol., 32 , pp. 621–627.

Devasenathipathy, S., Santiago, J. G., Wereley, S. T., Meinhart, C. D., and Takehara, K., 2003, “Particle Imaging Techniques for Microfabricated Fluidic Systems,” Exp. Fluids, 34 , pp. 504–514.

Stone, S. W., Meinhart, C. D., and Wereley, S. T., 2002, “A Microfluidic-Based Nanoscope,” Exp. Fluids, 33 , pp. 613–619.

Klank, H., Goranovic, G., Kutter, J. P., Gjelstrup, H., Michelsen, J., and Westergaard, C. H., 2002, “PIV Measurements in a Microfluidic 3d-Sheathing Structure With Three-Dimensional Flow Behaviour,” J. Micromech. Microeng., 12 , pp. 862–869.

Kim, M. J., Beskok, A., and Kihm, K. D., 2002, “Electro-Osmosis-Driven Microchannel Flows: A Comparative Study of Microscopic Particle Image Velocimetry Measurements and Numerical Simulations,” Exp. Fluids, 33 , pp. 170–180.

Son, S. Y., Kihm, K. D., and Han, J. C., 2002, “PIV Flow Measurements for Heat Transfer Characterization in Two-Pass Square Channels With Smooth and 90° Ribbed Walls,” Int. J. Heat Mass Transfer

[CrossRef], 45 , pp. 4809–4822.

Zeighami, R., Laser, D., Zhou, P., Asheghi, M., Devasenathipathy, S., Kenny, T., Santiago, J., and Goodson, K., 2000, “Experimental Investigation of Flow Transition in Microchannels Using Micron-Resolution Particle Image Velocimetry,” in "*Thermomechanical Phenomena in Electronic Systems Proceedings of the Intersociety Conference*", Vol. 2 , pp. 148–153.

Lee, S. Y., Wereley, S. T., Gui, L., Qu, W., and Mudawar, I., 2002, “Microchannel Flow Measurement Using Micro Particle Image Velocimetry,” in "*American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED*", Vol. 258 , pp. 493–500.

Sharp, K. V., and Adrian, R. J., 2004, “Transition From Laminar to Turbulent Flow in Liquid Filled Microtubes,” Exp. Fluids

[CrossRef], 36 , pp. 741–747.

Li, H., Ewoldt, R., and Olsen, M. G., 2005, “Turbulent and Transitional Velocity Measurements in a Rectangular Microchannel Using Microscopic Particle Image Velocimetry,” Exp. Therm. Fluid Sci., 29 , pp. 435–446.

Li, H., and Olsen, M., 2006, “MicroPIV Measurements of Turbulent Flow in Square Microchannels With Hydraulic Diameters From 200μmto640μm,” Int. J. Heat Fluid Flow, 27 , pp. 123–134.

Anderson, J. R., Chiu, D. T., Jackman, R. J., Chemiavskaya, O., McDonald, J. C., Wu, H., Whitesides, S. H., and Whitesides, G. M., 2000, “Fabrication of Topologically Complex Three-Dimensional Microfluidic Systems in PDMS by Rapid Prototyping,” Anal. Chem.

[CrossRef], 72 , pp. 3158–3164.

Jo, B. H., Van Lerverghe, L. M., Motsegood, K. M., and Beebe, D. J., 2000, “Three-Dimensional Microchannel Fabrication in Polydimethylsiloxane (PDMS) Elastomer,” J. Microelectromech. Syst.

[CrossRef], 9 , pp. 76–81.

Bourdon, C. J., Olsen, M. G., and Gorby, A. D., 2004, “Validation of Analytical Solution of Depth of Correlation in Microscopic Particle Image Velocimetry,” Meas. Sci. Technol.

[CrossRef], 15 , pp. 318–327.

Adrian, R. J., and Yao, C. S., 1983, “Pulsed Laser Technique Application to Liquid and Gaseous Flows and the Scattering Power of Seed Material,” Appl. Opt., 24 , pp. 42–52.

Prasad, A. K., Adrian, R. J., Landreth, C. C., and Offutt, P. W., 1992, “Effect of Resolution on the Speed and Accuracy of Particle Image Velocimetry Interrogation,” Exp. Fluids, 13 , pp. 105–116.

White, F. M., 1991, "*Viscous Fluid Flow (2nd ed.)*", McGraw-Hill, New York.

Wygnanski, I. J., and Champagne, F. H., 1973, “On Transition in a Pipe; Part 1. The Origin of Puffs and Slugs and the Flow in a Turbulent Slug,” J. Fluid Mech., 59 , pp. 281–335.

Schlichting, H., "*Boundary-Layer Theory (7th ed.)*", McGraw-Hill, New York.

Tracy, H. J., 1965, “Turbulent Flow in a Three-Dimensional Channel,” J. Hydraul. Div., Am. Soc. Civ. Eng., 91 , pp. 9–35.