Kodama, Y., Kakugawa, A., Takahashi, T., and Kawashima, H., 2000, “Experimental Study on Microbubbles and Their Applicability to Ship for Skin Friction Reduction,” Int. J. Heat Fluid Flow

[CrossRef], 21 , pp. 582–588.

Gad-el-Hak, M., 2000, "*Flow Control: Passive, Active and Reactive Flow Management*", Cambridge University Press, Cambridge, England.

McCormick, M. E., and Bhattacharyya, R., 1973, “Drag Reduction on a Submersible Hull by Electrolysis,” Nav. Eng. J., 85 , pp. 11–16.

Sanders, W. C., Ivy, E. M., Ceccio, S. L., Dowling, D. R., and Perlin, M., 2003, “Microbubble Drag Reduction at High Reynolds Number,” "*4th ASME JSME Joint Fluids Engineering Conference*", Honolulu, HI, Paper No. FEDSM2003-45649.

Madavan, N. K., Deutsch, S., and Merkle, C. L., 1984, “Reduction of Turbulent Skin Friction by Microbubbles,” Phys. Fluids

[CrossRef], 27 , pp. 356–363.

Fontaine, A., Deutsch, S., Brungart, T. A., Petrie, H. L., and Fenstermacker, M., 1999, “Drag Reduction by Coupled Systems: Microbubble Injection with Homogeneous Polymer and Surfactant Solutions,” Exp. Fluids, 26 , pp. 397–403.

Takahashi, T., Kakugawa, A., Kodama, Y., and Makino, M., 2001, “Experimental Study on Drag Reduction by Microbubbles Using a 50m-Long Flat Plate Ship,” "*Second International Symposium on Turbulence and Shear Flow Phenomena*", 1 , Stockholm, Sweden, pp. 175–180.

Kawamura, T., Moriguchi, Y., Kato, H., Kakugawa, A., and Kodama, Y., 2003, “Effect of Bubble Size on the Microbubble Drag Reduction of a Turbulent Boundary Layer,” "*4th ASME JSME Joint Fluids Engineering Conference*", Honolulu, HI, Paper No. FEDSM2003-45645.

Madavan, N. K., Deutsch, S., and Merkle, C. L., 1985, “Measurements of Local Skin Friction in a Reynolds Bubble-Modified Turbulent Boundary Layer.” J. Fluid Mech., 156 , pp. 237–256.

Legner, H. H., 1984, “A Simple Model for Gas Bubble Drag Reduction,” Phys. Fluids

[CrossRef], 27 , pp. 2788–2790.

Kitagawa, A., Sugiyama, K., Ashihara, M., Hishida, K., and Kodama, Y., 2003, “Measurement of Turbulence Modification by Microbubbles Causing Frictional Drag Reduction,” "*4th ASME JSME Joint Fluids Engineering Conference*", Honolulu, HI, Paper No. FEDSM2003-45648.

Madavan, N. K., Merkle, C. L., and Deutsch, S., 1985b, “Numerical Investigations into the Mechanisms of Microbubble Drag Reduction,” ASME J. Fluids Eng., 107 , pp. 370–377.

Xu, J., Maxey, M. R., and Karniadakis, G., 2002, “Numerical Simulation of Turbulent Drag Reduction Using Micro-Bubbles,” J. Fluid Mech.

[CrossRef], 468 , pp. 271–281.

Ferrante, A., and Elghobashi, S., 2004, “On the Physical Mechanisms of Drag Reduction in a Spatially Developing Turbulent Boundary Layer Laden with Microbubbles,” J. Fluid Mech.

[CrossRef], 503 , pp. 345–355.

Arakawa, K., Toda, K., and Yamamoto, M., 2003, “Modeling and Computational Study on Microbubble Two-Phase Turbulent Flow,” "*4th ASME JSME Joint Fluids Engineering Conference*", Honolulu, HI, Paper No. FEDSM2003-45760.

Kunz, R. F., Deutsch, S., and Lindau, J. W., 2003, “Two Fluid Modeling of Microbubble Turbulent Drag Reduction,” "*4th ASME JSME Joint Fluids Engineering Conference*", Honolulu, HI, Paper No. FEDSM2003-45640.

Yamamoto, Y., Gobara, R., and Uemura, T., 2001, “High-Efficiency Particle Detection Method Using 1D-correlation,” "*3rd Pacific Symposium on Flow Visualization and Image Processing*", Maui, HI, Paper No. F3130.

Uemura, T., Yamamoto, F., and Ohmi, K., 1991, “Mixing Flow in a Cylindrical Vessel Agitated by a Bubbling Jet,” "*Application of Laser Techniques to Fluid Mechanics*", Springer-Verlag, Berlin, pp. 512–536.

Stalisnas, M., Okamoto, K., and Kähler, C., 2003, “Main Results of the First International PIV Challenge,” Meas. Sci. Technol., 14 , pp. R63–R89.

Hassan, Y. A., Blanchat, T. K., Seeley, C. H., and Canaan, R. E., 1992, “Simultaneous Velocity Measurements of Both Components of a Two-Phase Flow Using Particle Image Velocimetry,” Int. J. Multiphase Flow, 18 , pp. 371–395.

Djenidi, L., Dubief, Y., and Antonia, R. A., 1997, Advantages of Using a Power Law in a Low Rθ Turbulent Boundary Layer,” Exp. Fluids

[CrossRef], 22 , pp. 348–350.

Durst, F., Kikura, H., Lekakis, I., Jovanovic, J., and Ye, Q., 1996, “Wall Shear Stress Determination from Near-Wall Mean Velocity Data in Turbulent Pipe and Channel Flows,” Exp. Fluids, 20 , pp. 417–428.

Schlichting, H., and Gersten, K., 2000, "*Boundary Layer Theory*", 8th ed., Springer, New York.

Warholic, M. D., Massah, H., and Hanratty, T. J., 1999, “Influence of Drag-Reducing Polymers on Turbulence: Effects of Reynolds Number, Concentration and Mixing,” Exp. Fluids

[CrossRef], 27 , pp. 461–472.

White, C. M., Somandepalli, V. S. R., and Mungal, M. G., 2004, “The Turbulence Structure of Drag-Reduced Boundary Layer Flow,” Exp. Fluids

[CrossRef], 36 , pp. 62–69.

Dubief, Y., White, C. M., Terrapon, V. E., Shaqfeh, E. S. G., Lele, S. K., and Moin, P., 2003, “Numerical Simulation of High Drag Reduction Regime in Polymer Solutions,” "*4th ASME JSME Joint Fluids Engineering Conference*", Honolulu, HI, Paper No. FEDSM2003-45652.

Udrea, D. D., Bryanston-Cross, P. J., Moroni, M., and Querzoli, G., 2000, “Particle Tracking Velocimetry Techniques,” "*Particle Image Velocimtery. Progress towards Industrial Application*", Kluwer Academic, Dordrecht, The Netherlands, pp. 279–304.