A New Approach to Linear Filtering and Prediction Problems OPEN ACCESS

[+] Author and Article Information
R. E. Kalman

Research Institute for Advanced Study, Baltimore, Md.

J. Basic Eng 82(1), 35-45 (Mar 01, 1960) (11 pages) doi:10.1115/1.3662552 History: Received February 24, 1959; Online November 04, 2011


The classical filtering and prediction problem is re-examined using the Bode-Shannon representation of random processes and the “state-transition” method of analysis of dynamic systems. New results are: (1) The formulation and methods of solution of the problem apply without modification to stationary and nonstationary statistics and to growing-memory and infinite-memory filters. (2) A nonlinear difference (or differential) equation is derived for the covariance matrix of the optimal estimation error. From the solution of this equation the co-efficients of the difference (or differential) equation of the optimal linear filter are obtained without further calculations. (3) The filtering problem is shown to be the dual of the noise-free regulator problem. The new method developed here is applied to two well-known problems, confirming and extending earlier results. The discussion is largely self-contained and proceeds from first principles; basic concepts of the theory of random processes are reviewed in the Appendix.

Copyright © 1960 by ASME
This article is only available in the PDF format.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In