0
RESEARCH PAPERS

Hydrostatic Gas Bearings

[+] Author and Article Information
John H. Laub

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif.

J. Basic Eng 82(2), 276-285 (Jun 01, 1960) (10 pages) doi:10.1115/1.3662571 History: Received December 12, 1958; Online November 04, 2011

Abstract

Orifice-regulated hydrostatic gas bearings offer significant advantages for instrument applications. In particular, gimbal bearings for inertial guidance systems can be designed with negligible starting torque and high stiffness, and for operation at extreme temperatures. A literature search revealed the lack of convenient and accurate data for the design of hydrostatic gas bearings of various configurations, taking into consideration the effects of compressibility, which cannot be neglected at higher pressures. Based on Euler’s equation, expressions for the significant parameters, i.e., pressure profile, gas-flow rate, gap height, and load-carrying capacity of pad and step bearings, are developed. These parameters yield results which are in excellent agreement with experimental data. The test fixture incorporates pneumatic loading by means of a bellows-suspended piston which is prevented from cocking by an air bearing.

Copyright © 1960 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In