Radial Distributions of Temporal-Mean Peripheral Velocity and Pressure for Fully Developed Turbulent Flow in Curved Channels

[+] Author and Article Information
A. W. Marris

University of British Columbia, Vancouver, B. C., Canada

J. Basic Eng 82(3), 528-536 (Sep 01, 1960) (9 pages) doi:10.1115/1.3662647 History: Received June 29, 1959; Online November 04, 2011


Experimental results are presented for the radial distributions of pressure and peripheral velocity for the turbulent flow of water in two closed curved channels of rectangular cross section and large depth-to-width ratio. The traverses were taken at the equatorial section of the channel and sufficiently far around the curve for the effect of curvature on the mean motion to be fully established. The two channels employed had widely differing mean-radius-to-width ratios n. The data obtained for a wide range of flow rates in the channel with a larger n indicated that Reynolds similarity existed between the flows in this channel. These data are compared with the pressure and velocity profiles predicted by potential flow theory and with a semiempirical logarithmic velocity distribution. Results obtained for the channel with smaller n showed that at above a certain Reynolds number an anomaly occurred in the flow, manifesting itself as an unstable “belt” of faster moving fluid, which moved outward from the inner wall as the Reynolds number was increased. This effect, considered to be the consequence of upstream stall, was accompanied by an adverse longitudinal-pressure gradient at the inner wall of the channel. It appeared to be eliminated by the insertion of an upstream splitter vane.

Copyright © 1960 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In