Strykowski, P. J., and Sreenivasan, K. R., 1990, “On the Formation and Suppression of Vortex Shedding at Low Reynolds Numbers,” J. Fluid Mech.

[CrossRef], 218 , pp. 71–107.

Wu, J. Z., Tramel, R. W., Zhu, F. L., and Yin, X. Y., 2000, “Vorticity Dynamics Theory of Three-Dimensional Flow Separation,” Phys. Fluids

[CrossRef], 12 , pp. 1932–1954.

Saffman, P. G., and Schatzman, J. C., 1982, “Stability of a Vortex Street of Finite Vortices,” J. Fluid Mech.

[CrossRef], 117 , pp. 171–185.

Jeon, D., and Gharib, M., 2004, “On the Relationship Between the Vortex Formation Process and Cylinder Wake Vortex Patterns,” J. Fluid Mech.

[CrossRef], 519 , pp. 161–181.

Homescu, C., Navon, I. M., and Li, Z., 2002, “Suppression of Vortex Shedding for Flow Around a Circular Cylinder Using Optimal Control,” Int. J. Numer. Methods Fluids

[CrossRef], 38 , pp. 43–69.

Williamson, C. H. K., 1996, “Vortex Dynamics in the Cylinder Wake,” Annu. Rev. Fluid Mech.

[CrossRef], 28 , pp. 477–539.

Williamson, C. H. K., and Govardhan, R., 2004, “Vortex-Induced Vibrations,” Annu. Rev. Fluid Mech.

[CrossRef], 36 , pp. 413–455.

Oertel, H., 1999, “Wakes Behind Blunt Bodies,” Annu. Rev. Fluid Mech.

[CrossRef], 22 , pp. 539–562.

Zhou, Z., So, R. M. C., Liu, M. H., and Zhang, H. J., 2000, “Complex Turbulent Wakes Generated by Two and Three Side-by-Side Cylinders,” Int. J. Heat Fluid Flow

[CrossRef], 21 , pp. 125–133.

Choi, S., Choi, H., and Kang, S., 2002, “Characteristics of Flow over a Rotationally Oscillating Cylinder at Low Reynolds Number,” Phys. Fluids

[CrossRef], 14 , pp. 2767–2777.

Young, D. L., and Huang, J. L., 2001, “Simulation of Laminar Vortex Shedding Flow Past Cylinders Using a Coupled BEM and FEM Model,” Comput. Methods Appl. Mech. Eng., 190 , pp. 5975–5998.

Bailey, S. C. C., Martinuzzi, R. J., and Kopp, G. A., 2002, “The Effects of Wall Proximity on Vortex Shedding From a Square Cylinder: Three-Dimensional Effects,” Phys. Fluids

[CrossRef], 14 , pp. 4160–4177.

Summer, D., Wong, S. S. T., Price, S. J., and Paidoussis, M. P., 1999, “Fluid Behavior of Side-By-Side Circular Cylinders in Steady Cross-Flow,” J. Fluids Struct., 13 , pp. 309–338.

Rapaport, D. C., and Clementi, E., 1986, “Eddy Formation of Obstructed Fluid Flow: A Molecular Dynamics Study,” Phys. Rev. Lett.

[CrossRef], 57 , pp. 695–698.

Rapaport, D. C., 1987, “Microscale Hydrodynamics: Discrete-Particle Simulation of Evolving Flow Patterns,” Phys. Rev. A

[CrossRef], 36 , pp. 3288–3299.

Dzwinel, W., Alda, W., Pogoda, M., and Yuen, D. A., 2000, “Turbulent Mixing in the Microscale: A 2D Molecular Dynamics Simulation,” Physica D, 137 , pp. 157–171.

Hirshfeld, D., and Rapaport, D. C., 2000, “Molecular Dynamics Simulation of Taylor-Couette Vortex Formation,” Phys. Rev. Lett.

[CrossRef], 80 , pp. 5337–5340.

Alda, W., Dzwinel, W., Kitowski, J., Moscinski, J., Pogoda, M., and Yuen, D., 1998, “Complex Fluid-Dynamical Phenomena Modeled by Large-Scale Molecular-Dynamics Simulations,” Comput. Phys.

[CrossRef], 12 , pp. 595–599.

Hirshfeld, D., and Rapaport, D. C., 2000, “Growth of Taylor Vortices: A Molecular Dynamics Study,” Phys. Rev. E

[CrossRef], 61 , pp. R21–R24.

Moscinski, J., Alda, W., Bubak, M., Dzwinel, W., Kitowski, J., Pogoda, M., and Yuen, D. A., 1997, “Moleculay Dynamics Simulations of Rayleigh-Taylor Instability,” Annu. Rev. Comput. Phys., 5 , pp. 23–60.

Kadau, K., Germann, T. C., Hadjiconstantinou, N. G., Lomdahl, P. S., Dimonte, G., Holian, B. L., and Alder, B. J., 2004, “Nanohydrodynamics Simulations: An Atomistic View of the Rayleigh-Taylor Instability,” Proc. Natl. Acad. Sci. U.S.A.

[CrossRef], 101 , pp. 5851–5855.

Kang, S., 2003, “Characteristics of Flow Over Two Circular Cylinders in a Side-By-Side Arrangement at Low Reynolds Numbers,” Phys. Fluids

[CrossRef], 15 , pp. 2486–2498.

Meiburg, E., 1986, “Comparison of the Molecular Dynamics Method and the Direct Simulation Monte Carlo Technique for Flows Around Simple Geometries,” Phys. Fluids

[CrossRef], 29 , pp. 3107–3113.

Beijeren, H. V., and Dorfman, J. R., 1980, “Kinetic Theory of Hydrodynamic Flows. I. The Generalized Normal Solution Method and Its Application to the Drag on a Sphere,” J. Stat. Phys.

[CrossRef], 23 , pp. 335–402.

Beijeren, H. V., and Dorfman, J. R., 1980, “Kinetic Theory of Hydrodynamic Flows. II. The Drag on a Sphere and on a Cylinder,” J. Stat. Phys.

[CrossRef], 23 , pp. 443–461.

Dorfman, J. R., Sengers, J. V., and McClure, C. F., 1986, “Kinetic Theory of the Drag Force on Objects in Rarefied Gas Flows,” Physica A

[CrossRef], 134 , pp. 283–322.

Rapaport, D. C., 1995, "*The Art of Molecular Dynamics Simulation*", Cambridge University Press, Cambridge, England.

Allen, M. P., and Tildesley, D. J., 1987, "*Computer Simulation of Liquids*", Oxford University Press, London.

Gala, T. M., and Attard, P., 2004, “Molecular Dynamics Study of the Effect of Atomic Roughness on the Slip Length at the Fluid-Solid Boundary During Shear Flow,” Langmuir, 20 , pp. 3477–3482.

Hansen, J. P., and McDonald, I. R., 1976, "*Theory of Simple Liquids*", Academic, London.

Ziarani, A. S., and Mohamad, A. A., 2005, “Nanohydrodynamics: The Effect of Solid Surface Roughness on Stability Flow,” "*Proc. of 13th Annual (International) Conference of Mechanical Engineering*", May 17–19, Isfahan University of Technology, Isfahan, Iran, pp. 1–8.

Heyes, D. M., Morris, G. P., and Evans, D. J., 1985, “Nonequilibrium Molecular Dynamics Study of Shear Flow in Soft Disks,” Chem. Phys., 83 , pp. 4760–4766.

Zdravkovich, M. M., 1985, “Flow Induced Oscillations of Two Interfacing Circular Cylinders,” J. Sound Vib., 101 , pp. 511–521.

White, F. M., 2003, "*Fluid Mechanics*", 5th ed., McGraw-Hill, New York.

Lam, K. M., Wong, P. T. Y., and Ko, N. W. M., 1993, “Interaction of Flows Behind Two Circular Cylinders of Different Diameters in Side-by-Side Arrangement,” Exp. Therm. Fluid Sci., 7 , pp. 189–201.