0
RESEARCH PAPERS

On the Mechanics of Non-Newtonian Media

[+] Author and Article Information
N. Tipei

Institute of Applied Mechanics, Bucharest, Romania

J. Basic Eng 87(3), 689-693 (Sep 01, 1965) (5 pages) doi:10.1115/1.3650644 History: Received July 10, 1964; Online November 03, 2011

Abstract

The extension of Newton’s shearing law is aimed at the tensions being expressed by means of a general type equation. The case of the Bingham type media is considered and the components of the tensions tensor for homogeneous isotropic bodies are obtained in an orthogonal system of coordinates. The notion of viscosity is also extended by the introduction of viscosities of any order n, having the dimensions (M/L)Tn−2 . The equation of motion upon any direction xi is then derived, extending thus the Navier-Stokes equations. Further the particular cases of incompressible fluids and steady motions are considered. Applications to simple cases are performed: The motion in tubes, coaxial cylinders, or between solid parallel surfaces. These applications lead, as particular forms of the general formulas obtained, to result in good agreement with those found by other authors (Paslay and Slibar, Milne, and so on). The flow between parallel plates is studied too, for different shearing laws. Finally, a more general form of the shearing stresses is considered and by the proposed generalization, the possibility of a direct unitary study of various continuous bodies of a great practical importance is obtained.

Copyright © 1965 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In