Slip Flow in Rectangular and Annular Ducts

[+] Author and Article Information
W. A. Ebert, E. M. Sparrow

Heat Transfer Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minn.

J. Basic Eng 87(4), 1018-1024 (Dec 01, 1965) (7 pages) doi:10.1115/1.3650793 History: Received March 16, 1965; Online November 03, 2011


An analysis has been performed to determine the velocity and pressure-drop characteristics of moderately rarefied gas flows in rectangular and annular ducts. The density level is such that a velocity slip may occur at the duct walls. In general, it is found that the effect of slip is to flatten the velocity distribution relative to that for a continuum flow; furthermore, the axial pressure gradient is diminished under slip-flow conditions. The conditions characterizing the onset of the slip regime have been determined on the basis of a 2 percent reduction in friction factor relative to the continuum value. For all the geometries studied here, the onset of slip occurred at a Knudsen number of 0.003. The effect of compressibility on the axial pressure drop was also investigated. It was found that compressibility increases the pressure drop primarily through an increase in viscous shear rather than through an increase in momentum flux.

Copyright © 1965 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In