Jacobs, J. W., and Krivets, V. V., 2005, “Experiments on the Late-Time Development of Single-Mode Richtmyer–Meshkov Instability,” Phys. Fluids

[CrossRef], 17 , p. 034105.

Harten, A., 1997, “High Resolution Schemes for Hyperbolic Conservation Laws,” J. Comput. Phys.

[CrossRef], 49 , pp. 357–393.

Sagaut, P., "*Large-Eddy Simulation for Incompressible Flows—An Introduction*", Springer-Verlag, Berlin.

Pope, S. B., 2000, "*Turbulent Flows*", Cambridge University Press, Cambridge.

F.F.Grinstein, L.G.Margolin, and W.J.Rider, editors. "*Implicit Large Eddy Simulation*", CUP, 2006.

Harten, A., Engquist, B., Osher, S., and Chakravarthy, S. R., 1987, “Uniformly High Order Accurate Essentially Non-Oscillatory Schemes, III,” J. Comput. Phys.

[CrossRef], 71 (2), pp. 231–303.

Boris, J. P., Grinstein, F. F., Oran, E. S., and Kolbe, R. L., 1992, “New Insights into Large Eddy Simulation,” Fluid Dyn. Res.

[CrossRef], 10 , pp. 199–228.

Drikakis, D., and Rider, W., "*High-Resolution Methods for Incompressible and Low-Speed Flows*", Springer, New York.

Fureby, C., and Grinstein, F. F., 2002, “Large Eddy Simulation of High-Reynolds-Number Free and Wall-Bounded Flows,” J. Comput. Phys.

[CrossRef], 181 , pp. 68–97.

Margolin, L. G., Rider, W. J., and Grinstein, F. F., 2006, “Modeling Turbulent Flow With Implicit Les,” J. Turbul., 7 (15), pp. 1–27.

Youngs, D. L., 2003, “Application of Miles to Rayleigh–Taylor and Richtmyer–Meshkov Mixing,” AIAA Paper No. 2003-4102.

Youngs, D. L., 1991, “Three-Dimensional Numerical Simulation of Turbulent Mixing by Rayleigh–Taylor Instability,” Phys. Fluids A

[CrossRef], 3 (5), pp. 1312–1320.

Thornber, B., and Drikakis, D., 2006, “ILES of Shock Waves and Turbulent Mixing Using High Resolution Riemann Solvers and TVD Methods,” "*ECCOMAS 2006, Minisymposia on Large Eddy Simulation: Theory and Applications*".

Grinstein, F. F., and Fureby, C., 2002, “Recent Progress on Miles for High Reynolds Number Flows,” ASME Trans. J. Fluids Eng., 848 , pp. 848–861.

Drikakis, D., 2003, “Advances in Turbulent Flow Computations Using High-Resolution Methods,” Prog. Aerosp. Sci.

[CrossRef], 39 , pp. 405–424.

Hahn, M., and Drikakis, D., 2005, “Large Eddy Simulation of Compressible Turbulence Using High-Resolution Method,” Int. J. Numer. Methods Fluids

[CrossRef], 49 , pp. 971–977.

Margolin, L. G., Smolarkiewicz, P. K., and Sorbjan, Z., 1999, “Large-Eddy Simulations of Convective Boundary Layers Using Nonoscillatory Differencing,” Physica D

[CrossRef], 133 , pp. 390–397.

Smolarkiewicz, P. K., and Margolin, L. G., 1998, “Mpdata: A Finite Difference Solver for Geophysical Flows,” J. Comput. Phys.

[CrossRef], 140 (2), pp. 459–480.

Gordnier, R. E., and Visbal, M. R., 2005, “Compact Different Scheme Applied to Simulation of Low-Sweep Delta Wing Flow,” AIAA J., 43 (8), pp. 1744–1752.

Drikakis, D., Fureby, C., Grinstein, F., Hahn, M., and Youngs, D., 2006, “Miles of Transition to Turbulence in the Taylor–Green Vortex System,” "*ERCOFTAC Workshop on Direct and Large Eddy Simulation-6*", p. 133.

Fureby, C., Tabor, F., Weller, H. G., and Gosman, A. D., 1997, “A Comparative Study of Subgrid Scale Models in Homogeneous Isotropic Turbulence,” Phys. Fluids

[CrossRef], 9 (5), pp. 1416–1429.

Porter, D. H., Woodward, P. R., and Pouquet, A., 1998, “Inertial Range Structures in Decaying Compressible Turbulent Flows,” Phys. Fluids

[CrossRef], 10 (1), pp. 237–245.

Margolin, L. G., Smolarkiewicz, P. K., and Wyszogrodzki, A. A., 2002, “Implicit Turbulence Modelling for High Reynolds Number Flows,” ASME J. Fluids Eng.

[CrossRef], 124 , pp. 862–867.

Toro, E. F., 1999, "*Riemann Solvers and Numerical Methods for Fluid Dynamics*", 2nd ed., Springer, New York.

Wang, S. P., Anderson, M. H., Oakley, J. G., Corradini, M. L., and Bonazza, R., 2004, “A Thermodynamically Consistent and Fully Conservative Treatment of Contact Discontinuities for Compressible Multi-Component Flows,” J. Comput. Phys.

[CrossRef], 195 , pp. 528–559.

Courant, R., Isaacson, E., and Rees, M., 1952, “On the Solution of Nonlinear Hyperbolic Differential Equations by Finite Differences,” Commun. Pure Appl. Math.

[CrossRef], 5 , pp. 243–255.

van Leer, B., 1979, “Towards the Ultimate Conservative Difference Scheme. V,” J. Comput. Phys.

[CrossRef], 32 , pp. 101–136.

Sweby, P. K., 1984, “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.

[CrossRef], 21 (5), pp. 995–1011.

Piperno, S., and Depeyre, S., 1998, “Criteria for the Design of Limiters Yielding Efficient High Resolution TVD Schemes,” Comput. Fluids

[CrossRef], 27 (2), pp. 183–197.

Kadalbajoo, M. K., and Kumar, R., 2006, “A High Resolution Total Variation Diminishing Scheme for Hyperbolic Conservation Law and Related Problems,” Appl. Math. Comput., 175 (2), pp. 1556–1573.

Mahmood, K., Basri, S., Mokhtar, A. S., Ahmad, M. M. H. M., Asrar, W., and Omar, A. A., 2005, “Flux Limiting With High-Order Compact Schemes,” "*43rd AIAA Aerospace Sciences Meeting and Exhibit*".

Harten, A., Engquist, B., Osher, S., and Chakravarthy, S. R., 1987, “Uniformly High Order Accurate Essentially Non-Oscillatory Schemes, III,” J. Comput. Phys.

[CrossRef], 71 (2), pp. 231–303.

Jiang, G.-S., and Shu, C.-H., 1996, “Efficient Implementation of Weighted ENO Schemes,” J. Comput. Phys.

[CrossRef], 126 , pp. 202–228.

Titarev, V. A., and Toro, E. F., 2004, “Finite-Volume WENO Schemes for Three-Dimensional Conservation Laws,” J. Comput. Phys.

[CrossRef], 201 , pp. 238–260.

Balsara, D. S., and Shu, C.-H., 2000, “Monotonicity Preserving Weighted Essentially Non-Oscillatory Schemes With Increasingly High Order of Accuracy,” J. Comput. Phys.

[CrossRef], 160 , pp. 405–452.

Suresh, A., and Huynh, H. T., 1997, “Accurate Monotonicity-Preserving Schemes With Runge–Kutta Time Stepping,” J. Comput. Phys.

[CrossRef], 136 , pp. 83–99.

Xu, Z., and Shu, C.-H., 2005, “Anti-Diffusive Flux Corrections for High-Order Finite Difference WENO Schemes,” J. Comput. Phys.

[CrossRef], 205 , pp. 458–485.

Shu, C.-W., 2003, “High-Order Finite Difference and Finite Volume WENO Schemes and Discontinuous Galerkin Methods for CFD,” Int. J. Comput. Fluid Dyn.

[CrossRef], 17 (2), pp. 107–118.

Pirozzoli, S., 2002, “Conservative Hybrid Compact-WENO Schemes for Shock-Turbulence Interaction,” J. Comput. Phys.

[CrossRef], 178 , pp. 81–117.

Kim, K. H., and Kim, C., 2005, “Accurate, Efficient and Monotonic Numerical Methods for MultiDimensional Compressible Flows. Part I: Spatial Discretization,” J. Comput. Phys.

[CrossRef], 208 , pp. 527–569.

Kim, K. H., and Kim, C., 2005, “Accurate, Efficient and Monotonic Numerical Methods for Multi-Dimensional Compressible Flows. Part II: Multi-Dimensional Limiting Process,” J. Comput. Phys.

[CrossRef], 208 , pp. 570–615.

Deng, X., and Zhang, H., 2000, “Developing High-Order Weighted Compact Non-Linear Schemes,” J. Comput. Phys.

[CrossRef], 165 , pp. 22–44.