An Experimental Study of the Turbulent-Flow Boundary-Layer Development in Smooth Annuli

[+] Author and Article Information
T. H. Okiishi, G. K. Serovy

Department of Mechanical Engineering and Engineering Research Institute, Iowa State University, Ames, Iowa

J. Basic Eng 89(4), 823-836 (Dec 01, 1967) (14 pages) doi:10.1115/1.3609711 History: Received August 01, 1967; Online November 03, 2011


This investigation was concerned with the turbulent flow with negligible heat transfer of a Newtonian fluid in the inlet region of smooth, concentric, constant-area annuli. Experimental mean-velocity profiles, static-pressure gradients, boundary-layer thickness parameters, and local friction factors were determined for airflow in annuli with radius ratios of 0.344 and 0.531. Each annulus was studied with both square-edged and rounded entrances. Flow separation caused by the abrupt change in area of the square-edged entrance resulted in skewed velocity profiles near the inlet. Consequently, no conventional boundary-layer growth occurred in the square-edged-entrance annuli. Further downstream, the skewness disappeared, and typical fully developed mean-velocity profiles were obtained. The turbulent mixing of fluid near the square-edged entrance appeared to have a stabilizing influence on the flow downstream. Conventional boundary-layer growth occurred in the rounded-entrance annuli since the gradual inlet produced a flat velocity profile at the beginning of the constant-area section. Velocity profiles, shape factors, displacement thicknesses, and local friction factors were appreciably affected by the transition from laminar to turbulent flow that occurred in the boundary layers. Further, fully developed velocity profiles were not obtained in the lengths tested.

Copyright © 1967 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In