Effect of State-of-Stress and Yield Criterion on the Bauschinger Effect

[+] Author and Article Information
S. T. Rolfe, R. P. Haak, J. H. Gross

United States Steel Corporation, Applied Research Laboratory, Monroeville, Pa.

J. Basic Eng 90(3), 403-408 (Sep 01, 1968) (6 pages) doi:10.1115/1.3605115 History: Received May 14, 1968; Online November 03, 2011


During fabrication, the cold forming of structural components may reduce the yield strength of a component if it is loaded in a direction opposite to that of the cold forming. This reduction in yield strength, referred to as the Bauschinger effect, is influenced by the state-of-stress under which the cold forming is performed, by the criterion used to determine the yield strength, and by the use of post-forming stress relief. To establish the importance and magnitude of these effects, specimens from 2 1/2 -in-thick plates of HY-80 steel, cold-formed by plane strain bending, were tested along with specimens that were cold-formed by plane-stress axial straining. For material tested in a direction opposite to that of cold forming, the Bauschinger effect was observed both in tension and compression, whereas for material tested at 90 deg to the direction of cold forming in plane strain, both the tensile and compressive yield strengths increased and no Bauschinger effect was observed. Because of the difference in restraint, the Bauschinger effect was greater for plane-stress axial deformation than for plane-strain bending deformation. The Bauschinger effect was greater when the yield strength was determined at small offsets and was essentially eliminated at an offset greater than 0.5 percent. In addition, the Bauschinger effect was greatest for small amounts of cold deformation and was progressively decreased by strain hardening at large amounts of cold deformation. The reduction in secant modulus and in yield strength (Bauschinger effect) in cold-formed material was essentially eliminated by stress-relief treatment at 1025 deg. F. The results indicate the importance of knowing the cold-forming state-of-stress, the criterion used in determining yield strength, and the effects of stress relief when assessing the effects of cold deformation on mechanical properties.

Copyright © 1968 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In