Franca, L. P., and Stenberg, R., 1991, “Error Analysis of Some Galerkin Least Squares Methods for the Elasticity Equations,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.

[CrossRef], 28 (6), pp. 1680–1697.

Owens, R. G., and Phillips, T. N., 2002, "*Computational Rheology*", Imperial College, London, UK.

Marchal, J. M., and Crochet, M. J., 1986, “Hermitian Finite Elements for Calculating Viscoelastic Flow,” J. Non-Newtonian Fluid Mech., 20 , pp. 187–207.

Marchal, J. M., and Crochet, M. J., 1987, “A New Mixed Finite Element for Calculating Viscoelastic Flow,” J. Non-Newtonian Fluid Mech.

[CrossRef], 26 , pp. 77–114.

Fortin, M., and Pierre, R., 1989, “On the Convergence of the Mixed Method of Crochet and Marchal for Viscoelastic Flows,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 73 , pp. 341–350.

Ruas, V., Carneiro de Araujo, J. H., and Silva Ramos, M. A. M., 2004, “Multi-Field Finite Element Methods With Discontinuous Pressures for Axisymmetric Incompressible Flow,” J. Comput. Appl. Math., 168 , pp. 393–402.

Behr, M., Franca, L. P., and Tezduyar, T. E., 1993, “Stabilized Finite Element Methods for the Velocity-Pressure-Stress Formulation of Incompressible Flows,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 104 , pp. 31–48.

Franca, L. P., and Frey, S., 1992, “Stabilized Finite Element Methods: II. The Incompressible Navier-Stokes Equations,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 99 , pp. 209–233.

Baaijens, F. P. T., 1998, “Mixed Finite Element Analysis for Viscoelastic Flow Analysis: A Review,” J. Non-Newtonian Fluid Mech.

[CrossRef], 79 , pp. 361–385.

Bonvin, J., Picasso, M., and Stenberg, R., 2001, “GLS and EVSS Methods for a Three-Field Stokes Problem Arising From Viscoelastic Flows,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 190 , pp. 3893–3914.

Crochet, M. J., and Keunings, R., 1982, “Finite Element Analysis of Die Swell of a Highly Elastic Fluid.” J. Non-Newtonian Fluid Mech.

[CrossRef], 10 , pp. 339–356.

Coronado, O. M., Arora, D., Behr, M., and Pasquali, M., 2006, “Four-Field Galerkin/Least-Squares Formulation for Viscoelastic Fluids,” J. Non-Newtonian Fluid Mech.

[CrossRef], 140 , pp. 132–144.

Guénette, R., and Fortin, M., 1995, “A New Mixed Finite Element Method for Computing Viscoelastic Flows,” J. Non-Newtonian Fluid Mech.

[CrossRef], 60 , pp. 27–52.

Sun, J., Smith, M. D., Armstrong, R. C., and Brown, R. A., 1999, “Finite Element Method for Viscoelastic Flows Based on the Discrete Adaptative Viscoelastic Stress Splitting and the Discontinuous Galerkin Method: DAVSS-G/DG,” J. Non-Newtonian Fluid Mech.

[CrossRef], 86 , pp. 281–307.

Gatica, G. N., González, M., and Meddahi, S., 2004, “A Low-Order Mixed Finite Element Method for a Class of Quasi-Newtonian Stokes Flows. Part I: A Priori Error Analysis,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 193 , pp. 881–892.

Hughes, T. J. R., Franca, L. P., and Balestra, M., 1986, “A New Finite Element Formulation for Computational Fluid Dynamics: V. Circumventing the Babuska-Brezzi Condition: A Stable Petrov-Galerkin Formulation of the Stokes Problem Accomodating Equal-Order Interpolations.” Comput. Methods Appl. Mech. Eng.

[CrossRef], 59 , pp. 85–99.

Gurtin, M. E., 1981, "*An Introduction to Continuum Mechanics*", Academic, New York.

Ferguson, J., and Kemblowski, Z., 1991, "*Applied Fluid Rheology*", Cambridge University Press, Cambridge.

Tanner, R. I., 1988, "*Engineering Rheology*", Clarendon, Oxford, UK.

Astarita, G., and Marrucci, G., 1974, "*Principles of Non-Newtonian Fluid Mechanics*", McGraw-Hill, UK.

Bird, R. B., Armstrong, R. C., and Hassager, O., 1987, "*Dynamics of Polymeric Liquids*", Wiley, New York.

Carreau, P. J., 1968, Ph.D. thesis, University of Wisconsin, Madison.

Ciarlet, P. G., 1978, "*The Finite Element Method for Elliptic Problems*", North-Holland, Amsterdam.

Hughes, T. J. R., 1987, "*The Finite Element Method: Linear Static and Dynamic Finite Element Analysis*", Prentice-Hall, Englewood Cliffs, NJ.

Dahlquist, G., and Bjorck, A., 1969, "*Numerical Methods*", Prentice-Hall, Englewood Cliffs, NJ.

Ghia, U., Ghia, K. N., and Shin, C. T., 1982, “Hi-Re Solution for Incompressible Flow Using the Navier-Stokes Equations and the Multigrid Method.” J. Comput. Phys.

[CrossRef], 48 , pp. 387–411.

Schreiber, R., and Keller, H. B., 1983, “Driven Cavity Flows by Efficient Numerical Techniques,” J. Comput. Phys.

[CrossRef], 49 , pp. 310–333.

Ku, H. C., and Hatziavramidis, D., 1985, “Solutions of the Two Dimensional Navier-Stokes Equations by Chebyshev Expansion Methods,” Comput. Fluids, 13 , pp. 99–113.

Sivaloganathan, S., and Shaw, G. J., 1988, “A Multigrid Method for Recirculating Flows,” Int. J. Numer. Methods Fluids

[CrossRef], 8 , pp. 417–440.

Jurjevic, R., 1999, “Modelling of Two-Dimensional Laminar Flow Using Finite Element Method,” Int. J. Numer. Methods Fluids, 31 , pp. 601–626.

Neofytou, P., 2005, “A 3rd Order Upwind Finite Volume Method for Generalized Newtonian Fluid Flows,” Adv. Eng. Software, 36 , pp. 664–680.

Kim, M. E., Brown, R. A., and Armstrong, R. C., 1983, “The Roles of Inertia and Shear-Thinning in Flow of an Inelastic Liquid Through an Axisymmetric Sudden Contraction,” J. Non-Newtonian Fluid Mech.

[CrossRef], 13 , pp. 341–363.

Brooks, A. N., and Hughes, T. J. R., 1982, “Streamline Upwind/Petrov-Galerkin Formulations for Convective Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 32 , pp. 199–259.

Almeida, R. C., and Galeão, A. C., 1999, “An Adaptive Petrov-Galerkin Formulation for the Compressible Euler and Navier-Stokes Equations,” Comput. Methods Appl. Mech. Eng., 129 , pp. 157–176.