0
RESEARCH PAPERS

An Efficient Computational Procedure for the Optimization of a Class of Distributed Parameter Systems

[+] Author and Article Information
D. A. Wismer

Department of Engineering, University of California, Los Angeles, Calif.

J. Basic Eng 91(2), 190-194 (Jun 01, 1969) (5 pages) doi:10.1115/1.3571057 History: Received December 16, 1968; Online November 03, 2011

Abstract

The optimal control problem for a broad class of distributed parameter systems defined by vector parabolic partial differential equations is considered. The problem is solved by discretizing the spatial domain and then treating the (large) resultant set of ordinary differential equations as a set of independent subsystems. The subsystems are determined by decomposition of the total system into lower-dimensional problems and the necessary conditions for optimality of the overall system are then satisfied by an iterative procedure. With this treatment, the optimal control problem can be solved for larger systems (or finer spatial discretizations) than would otherwise be feasible. An example is given for a system described by a nonlinear parabolic partial differential equation in one space dimension.

Copyright © 1969 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In