Effects of Nonuniform Inlet Velocity Profiles on Flow Regimes and Performance in Two-Dimensional Diffusers

[+] Author and Article Information
S. Wolf

Atomic Power Equipment Department, General Electric Co., San Jose, Calif.

J. P. Johnston

Stanford University, Stanford, Calif.

J. Basic Eng 91(3), 462-474 (Sep 01, 1969) (13 pages) doi:10.1115/1.3571155 History: Received August 19, 1968; Online November 03, 2011


An analytical and experimental study on the effects of large distortions of inlet velocity profiles on flow regimes and performance in diffusers is reported. Experiments are restricted to flow in straight, two-dimensional diffusers with turbulent boundary layers. Systematic data are obtained for two general types of inlet flows: (1) simple, uniform shear flows in the core, and (2) severely nonuniform shear flows of the wake, jet, and step-shear type. For uniform shear flows a first order prediction method based on inviscid rotational flow and the boundary layer blockage concept is developed and verified for diffusers operating in the unstalled flow regime. For nonuniform shear flows the inviscid rotational model is shown to predict performance trends better than the irrotational model; however, the inviscid rotational model is inadequate as a precise prediction method because no account is taken of mixing in the core region. Geometry and performance correlations for peak pressure recovery (at constant N/W1 ) are also established.

Copyright © 1969 by ASME
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In