This communication reports the heat and mass transfer analysis in the stagnation-point flow toward a stretching sheet. An incompressible micropolar fluid takes into account the diffusion-thermo- (Dufour) and thermal-diffusion (Soret) effects. The arising nonlinear differential system is solved by homotopy analysis method. Convergence of the obtained homotopy solutions is clearly justified. Special emphasis has been given to various physical parameters through graphs and tables. It is noticed that fields are influenced appreciably with the variation of embedding parameters. A comparison of the present results with the existing numerical solution is discussed in a limiting sense.