0
RESEARCH PAPERS

Cavitation Erosion Studies With Venturi and Rotating Disk in Water

[+] Author and Article Information
B. C. Syamala Rao, N. S. Lakshmana Rao, K. Seetharamiah

Department of Civil and Hydraulic Engineering, Indian Institute of Science, Bangalore, India

J. Basic Eng 92(3), 563-573 (Sep 01, 1970) (11 pages) doi:10.1115/1.3425070 History: Received July 02, 1969; Online October 27, 2010

Abstract

A study of the cavitation erosion behind blunt bodies with varying hydrodynamic factors of flow, such as, the test time, length of cavity, velocity, and pressure; the geometrical parameters of the system, namely, the size and shape of the cavitating body, its aspect-ratio, and its surface roughness; and the mechanical properties of the materials, namely, the density, yield strength, tensile strength, engineering strain energy, hardness, ultimate resilience, percent elongation, percent reduction in area and elastic modulus are reported. The study of the volume eroded along with the hydrodynamic factors of the flow and the geometrical parameters of the system in general indicated that a critical zone of cavitation conditions exists in which the erosion caused is very severe. This critical zone is described by a range of values of V/l (α Strouhal frequency, f for detachment of cavities). Among the correlations studied for the inverse of rate of volume eroded as a function of individual and twin mechanical properties, the product of ultimate resilience and Brinell hardness showed the best correlation.

Copyright © 1970 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In