Gad-el-Hak, M., and Bandyopadhyay, P., 1994, “Reynolds Number Effects in Wall-Bounded Turbulent Flows,” Appl. Mech. Rev., 47 , pp. 307–365.

[CrossRef]Fernholz, H., and Finley, J., 1996, “The Incompressible Zero-Pressure-Gradient Turbulent Boundary Layer: An Assessment of the Data,” Prog. Aerosp. Sci., 32 , pp. 245–311.

[CrossRef]Robinson, S., 1991, “Coherent Motions in the Turbulent Boundary Layer,” Annu. Rev. Fluid Mech., 23 , pp. 601–639.

[CrossRef]Panton, R., 1997, "*Self-Sustaining Mechanisms of Wall Turbulence*", Computational Mechanics, Southampton, UK.

Panton, R., 2005, “Review of Wall Turbulence Described by Composite Expansions,” Appl. Mech. Rev., 58 , pp. 1–36.

[CrossRef]Buschmann, M., and Gad-el-Hak, M., 2006, “Recent Developments in Scaling of Wall-Bounded Flows,” Prog. Aerosp. Sci., 42 , pp. 419–467.

[CrossRef]Adrian, R., 2007, “Hairpin Vortex Organization in Wall Turbulence,” Phys. Fluids, 19 , p. 041301.

[CrossRef]McKeon, B., 2007, “Scaling and Structure in High Reynolds Number Wall-Bounded Flows,” Philos. Trans. R. Soc. London, Ser. A, 365 , p. 1852.

Marusic, I., McKeon, B., Monkewitz, P., Nagib, H., Smits, A., and Sreenivasan, K., 2010, “Wall-Bounded Turbulent Flows at High Reynolds Numbers: Recent Advances and Key Issues,” Phys. Fluids, 22 , p. 065103.

[CrossRef]Smits, A., McKeon, B., and Marusic, I., “High Reynolds Number Wall Turbulence,” Annu. Rev. Fluid Mech., to be published.

Prandtl, L., 1905, “Uber flussigkeitsbewegungen bei sehr kleiner reibung,” "*Verhandlungen des Dritten Internationalen Mathematiker-Kongresses in Heidelberg 1904*", A.Krazer, ed., Teubner, Leipzig, pp. 484–491.

Shivamoggi, B., 2003, "*Perturbation Methods for Differential Equations*", Birkhauser, Boston.

Wu, J. -Z., Ma, H. -Y., and Zhou, M. -D., 2006, "

*Vorticity and Vortex Dynamics*", Springer-Verlag, Berlin.

[CrossRef]Lagerstrom, P., 1988, "*Matched Asymptotic Expansions: Ideas and Techniques*", Springer-Verlag, Berlin.

Pope, S., 2000, "*Turbulent Flow*", Cambridge University Press, Cambridge, UK.

Van Dyke, M., 1982, "*An Album of Fluid Motion*", Parabolic, Stanford, CA.

Garratt, J., 1992, "*The Atmospheric Boundary Layer*", Cambridge University Press, Cambridge, UK.

Tennekes, H., and Lumley, J., 1972, "*A First Course in Turbulence*", MIT, Cambridge, MA.

Evans, H., 1968, "*Laminar Boundary-Layer Theory*", Addison-Wesley, New York.

Afzal, N., 1982, “Fully Developed Turbulent Flow in a Pipe: An Intermediate Layer,” Ing.-Arch., 52 , pp. 355–377.

[CrossRef]Sreenivasan, K., and Sahay, A., 1997, “The Persistence of Viscous Effects in the Overlap Region and the Mean Velocity in Turbulent Pipe and Channel Flows,” "*Self-Sustaining Mechanisms of Wall Turbulence*", R.Panton, ed., Computational Mechanics, Southampton, UK, pp. 253–272.

Wei, T., Fife, P., Klewicki, J., and McMurtry, P., 2005, “Properties of the Mean Momentum Balance in Turbulent Boundary Layer, Pipe and Channel Flows,” J. Fluid Mech., 522 , pp. 303–327.

[CrossRef]Lighthill, M., 1963, “Introduction. Boundary Layer Theory,” "*Laminar Boundary Layers*", L.Rosenhead, ed., Oxford University Press, Oxford, UK, Chap. II.

Sherman, F., 1990, "*Viscous Flows*", McGraw-Hill, New York.

Hansen, A., 1964, "*Similarity Analyses of Boundary Value Problems in Engineering*", Prentice-Hall, Englewood Cliffs, NJ.

Cantwell, B., 2002, "*Introduction to Symmetry Analysis*", Cambridge University Press, Cambridge, UK.

Schlichting, H., and Gersten, K., 2000, "*Boundary Layer Theory*", Springer-Verlag, Berlin.

Gill, A., 1968, “The Reynolds Number Similarity Argument,” J. Math. Phys., 47 , pp. 437–441.

Afzal, N., and Yajnik, K., 1973, “Analysis of Turbulent Pipe and Channel Flows at Moderately Large Reynolds Numbers,” J. Fluid Mech., 61 , pp. 23–31.

[CrossRef]Barenblatt, G., 1993, “Scaling Laws for Fully Developed Turbulent Shear Flows. Part 1: Basic Hypotheses and Analysis,” J. Fluid Mech., 248 , pp. 513–520.

[CrossRef]Fife, P., Wei, T., Klewicki, J., and McMurtry, P., 2005, “Stress Gradient Balance Layers and Scale Hierarchies in Wall-Bounded Turbulence,” J. Fluid Mech., 532 , pp. 165–189.

[CrossRef]Fife, P., Klewicki, J., McMurtry, P., and Wei, T., 2005, “Scaling in the Presence of Indeterminacy: Wall-Induced Turbulence,” Multiscale Model. Simul., 4 , pp. 936–959.

[CrossRef]Monkewitz, P., Chauhan, K., and Nagib, H., 2007, “Self-Consistent High-Reynolds Number Asymptotics for Zero-Pressure-Gradient Turbulent Boundary Layers,” Phys. Fluids, 19 , p. 115101.

[CrossRef]Fox, R., McDonald, A., and Pritchard, P., 2004, "*Introduction to Fluid Mechanics*", Wiley, New York.

Zagarola, M., and Smits, A., 1998, “Mean Flow Scaling of Turbulent Pipe Flow,” J. Fluid Mech., 373 , pp. 33–79.

[CrossRef]Zagarola, M., and Smits, A., 1998, “A New Mean Velocity Scaling of Turbulent Boundary Layers,” Paper No. ASME-FEDSM-4950.

Connelly, J. S., Schultz, M. P., and Flack, K. A., 2006, “Velocity-Defect Scaling for Turbulent Boundary Layers With a Range of Relative Roughness,” Exp. Fluids, 40 , pp. 188–195.

[CrossRef]Castillo, L., and George, W., 2001, “Similarity Analysis for Turbulent Boundary Layers With Pressure Gradient: Outer Flow,” AIAA J., 39 , pp. 41–47.

[CrossRef]Brzek, B., Torres-Nieves, S., Lebron, J., Cal, R., Meneveau, C., and Castillo, L., 2009, “Effects of Free-Stream Turbulence on Rough Surface Turbulent Boundary Layers,” J. Fluid Mech., 635 , pp. 207–243.

[CrossRef]Winter, K., 1979, “An Outline of the Techniques Available for the Measurement of Skin Friction in Turbulent Boundary Layers,” Prog. Aerosp. Sci., 18 , pp. 1–57.

[CrossRef]Haritonidis, J., 1989, “The Measurement of Wall Shear Stress,” "*Advances in Fluid Mechanics*", M.Gad-el-Hak, ed., Springer-Verlag, Berlin, pp. 229–261.

Hutchins, N., and Choi, K. -S., 2002, “Accurate Measurements of Local Skin Friction Coefficient Using Hot-Wire Anemometry,” Prog. Aerosp. Sci., 38 , pp. 421–446.

[CrossRef]Klewicki, J., 2007, “Wall-Bounded Flows, Section 12.2, Measurement of Wall Shear Stress,” "*Spring Handbook of Experimental Fluid Mechanics*", J.F. C.Tropea and A.Yarin, eds., Springer-Verlag, Berlin, pp. 875–886.

Clauser, F., 1954, “Turbulent Boundary Layers in Adverse Pressure Gradients,” J. Aeronaut. Sci., 21 , pp. 91–108.

Allen, J., 1977, “Experimental Study of Error Sources in Skin Friction Balance Measurements,” ASME J. Fluids Eng., 99 , pp. 197–204.

Monty, J., 2005, “Developments in Smooth Wall Turbulent Duct Flows,” Ph.D. thesis, University of Melbourne, Melbourne, VIC.

Nagib, H., Chauhan, K., and Monkewitz, P., 2007, “Approach to an Asymptotic State for Zero Pressure Gradient Turbulent Boundary Layers,” Philos. Trans. R. Soc. London, Ser. A, 365 , pp. 755–770.

[CrossRef]Nagib, H., Christophorou, C., and Monkewitz, P., 2004, “High Reynolds Number Turbulent Boundary Layers Subjected to Various Pressure-Gradient Conditions,” IUTAM 2004: One Hundred Years of Boundary Layer Research , Gottingen, Germany, Aug. 12–14.

Nagib, H., Chauhan, K., and Monkewitz, P., 2005, “Scaling of the High Reynolds Number Turbulent Boundary Layer Revisited,” AIAA Paper No. 2005-4810.

Nagib, H., and Chauhan, K., 2008, “Variation of von Karman Coefficient in Canonical Flows,” Phys. Fluids, 20 , p. 101518.

[CrossRef]Monkewitz, P., Chauhan, K., and Nagib, H., 2008, “Comparison of Mean Flow Similarity Laws in Zero-Pressure-Gradient Turbulent Boundary Layers,” Phys. Fluids, 20 , p. 105102.

[CrossRef]Davidson, P., 2004, "*Turbulence: An Introduction for Scientists and Engineers*", Oxford University Press, Oxford.

Sahay, A., 1997, “The Mean Velocity and Reynolds Shear Stress in Turbulent Channel and Pipe Flow,” Ph.D. thesis, Yale University, New Haven, CT.

Hoyas, S., and Jimenez, J., 2008, “Reynolds Number Effects on the Reynolds-Stress Budgets in Turbulent Channels,” Phys. Fluids, 20 , p. 101511.

[CrossRef]Lele, S., 1992, “Vorticity Form of Turbulence Transport Equations,” Phys. Fluids A, 4 , pp. 1767–1772.

[CrossRef]Wu, J. -Z., and Wu, J. -M., 1993, “Interactions Between a Solid Surface and a Viscous Compressible Flow Field,” J. Fluid Mech., 254 , pp. 183–211.

[CrossRef]Balint, J. -L., Wallace, J., and Vukoslavcevic, P., 1991, “The Velocity and Vorticity Vector Fields of a Turbulent Boundary Layer. Part 2. Statistical Properties,” J. Fluid Mech., 228 , pp. 53–86.

Honkan, A., and Andreopoulos, Y., 1997, “Vorticity, Strainrate, and Dissipation Characteristics in the Near-Wall Region of Turbulent Boundary Layers,” J. Fluid Mech., 350 , pp. 29–96.

[CrossRef]Hinze, J., 1975, "*Turbulence*", McGraw-Hill, New York.

Eyink, G., 2008, “Turbulent Flow in Pipes and Channels as Cross-Stream ‘Inverse Cascades’ of Vorticity,” Phys. Fluids, 20 , p. 125101.

[CrossRef]Klewicki, J., 1989, “Velocity-Vorticity Correlations Related to the Gradients of the Reynolds Stress in Parallel Turbulent Wall Flows,” Phys. Fluids A, 1 , pp. 1285–1289.

[CrossRef]Townsend, A., 1961, “Equilibrium Layers and Wall Turbulence,” J. Fluid Mech., 11 , pp. 97–120.

[CrossRef]Hamman, C., Klewicki, J., and Kirby, M., 2008, “On the Lamb Vector Divergence in Navier–Stokes Flows,” J. Fluid Mech., 610 , pp. 261–284.

[CrossRef]Kim, J., 1989, “On the Structure of Pressure Fluctuations in Simulated Turbulent Channel Flow,” J. Fluid Mech., 205 , pp. 421–451.

[CrossRef]Bradshaw, P., and Koh, Y., 1981, “A Note on Poisson’s Equation for Pressure in a Turbulent Flow,” Phys. Fluids, 24 , p. 777.

[CrossRef]Tsuji, Y., Fransson, J., Alfredsson, P., and Johansson, A., 2007, “Pressure Statistics and Their Scaling in High-Reynolds-Number Turbulent Boundary Layers,” J. Fluid Mech., 585 , pp. 1–40.

[CrossRef]2007, "

*Springer Handbook of Experimental Fluid Mechanics*", C.Tropea, A.Yarin, and J.F.Foss, eds., Springer-Verlag, Berlin.

[CrossRef]Wyngaard, J., 1969, “Spatial Resolution of the Vorticity Meter and Other Hot-Wire Arrays,” J. Phys. E: J. Sci. Instrum., 2 , pp. 983–987.

[CrossRef]Johansson, A., and Alfredsson, P., 1983, “Effects of Imperfect Spatial Resolution on Measurements of Wall-Bounded Turbulent Shear Flows,” J. Fluid Mech., 137 , pp. 409–421.

[CrossRef]Ligrani, P., and Bradshaw, P., 1987, “Spatial Resolution and Measurement of Turbulence in the Viscous Sublayer Using Subminiature Hot-Wire Probes,” Exp. Fluids, 5 , pp. 407–417.

[CrossRef]Park, S., and Wallace, J., 1993, “The Influence of Instantaneous Velocity Gradients on Turbulence Properties Measured With Multi-Sensor Hot-Wire Probes,” Exp. Fluids, 16 , pp. 17–26.

[CrossRef]Klewicki, J., and Falco, R., 1990, “On Accurately Measuring Statistics Associated With Small Scale Structure in Turbulent Boundary Layers Using Hot-Wire Probes,” J. Fluid Mech., 219 , pp. 119–142.

[CrossRef]Antonia, R., Zhu, Y., and Kim, J., 1993, “On the Measurement of Lateral Velocity Derivatives in Turbulent Flows,” Exp. Fluids, 15 , pp. 65–69.

[CrossRef]De Graaff, D., and Eaton, J., 2000, “Reynolds Number Scaling of the Flat Plate Turbulent Boundary Layer,” J. Fluid Mech., 422 , pp. 319–346.

[CrossRef]Hutchins, N., and Marusic, I., 2007, “Large Scale Influences in Near-Wall Turbulence,” Philos. Trans. R. Soc. London, Ser. A, 365 , pp. 647–664.

[CrossRef]Wallace, J., and Foss, J., 1995, “The Measurement of Vorticity in Turbulent Flows,” Annu. Rev. Fluid Mech., 27 , pp. 469–514.

[CrossRef]Metzger, M., and Klewicki, J., 2001, “A Comparative Study of Wall Region Structure in High and Low Reynolds Number Turbulent Boundary Layers,” Phys. Fluids, 13 , pp. 692–701.

[CrossRef]Mathis, R., Hutchins, N., and Marusic, I., 2009, “Large-Scale Amplitude Modulation of the Small-Scale Structures in Turbulent Boundary Layers,” J. Fluid Mech., 628 , pp. 311–337.

[CrossRef]Hutchins, N., Nickels, T., Marusic, I., and Chong, M., 2009, “Hot-Wire Spatial Resolution Issue in Wall-Bounded Turbulence,” J. Fluid Mech., 635 , pp. 103–136.

[CrossRef]Morris, S., and Foss, J., 2005, “Vorticity Spectra in High Reynolds Number Anisotropic Turbulence,” Phys. Fluids, 17 , p. 088102.

[CrossRef]Folz, A., 1997, “An Experimental Study of the Near-Surface Turbulence in the Atmospheric Boundary Layer,” Ph.D. thesis, University of Maryland, College Park, MD.

Folz, A., and Wallace, J., 2010, “Near-Surface Turbulence in the Atmospheric Boundary Layer,” Physica D: Nonlinear Phenomena, 239 , pp. 1305–1317.

[CrossRef]Schewe, G., 1983, “On the Structure and Resolution of Wall-Pressure Fluctuations Associated With Turbulent Boundary Layer Flow,” J. Fluid Mech., 134 , pp. 311–328.

[CrossRef]Lueptow, R., 1995, “Transducer Resolution and the Turbulent Wall Pressure Spectrum,” J. Acoust. Soc. Am., 97 , pp. 370–378.

[CrossRef]Gravante, S., Naguib, A., Work, C., and Nagib, H., 1998, “Characterization of the Pressure Fluctuations Under a Fully Developed Turbulent Boundary Layer,” AIAA J., 36 , pp. 1808–1816.

[CrossRef]Klewicki, J., Priyadarshana, P., and Metzger, M., 2008, “Statistical Structure of the Fluctuating Wall-Pressure and Its In-Plane Gradients at High Reynolds Number,” J. Fluid Mech., 609 , pp. 195–220.

[CrossRef]Andreopoulos, Y., and Agui, J., 1996, “Wall-Vorticity Flux Dynamics in a Two-Dimensional Turbulent Boundary Layer,” J. Fluid Mech., 309 , pp. 45–84.

[CrossRef]Sheng, J., Malkiel, E., and Katz, J., 2009, “Buffer Layer Structures Associated With Extreme Wall Stress Events in a Smooth Wall Turbulent Boundary Layer,” J. Fluid Mech., 633 , pp. 17–60.

[CrossRef]Marusic, I., and Kunkel, G., 2003, “Streamwise Turbulence Intensity Formulation for Flat-Plate Boundary Layers,” Phys. Fluids, 15 , pp. 2461–2464.

[CrossRef]Hoyas, S., and Jimenez, J., 2006, “Scaling the Velocity Fluctuations in Turbulent Channels up to Reτ=2003,” Phys. Fluids, 18 , p. 011702.

[CrossRef]Hites, M., 1997, “Scaling of High Reynolds Number Turbulent Boundary Layers in the National Diagnostic Facility,” Ph.D. thesis, Illinois Institute of Technology, Chicago, IL.

Osterlund, J., 1999, “Experimental Studies of the Zero Pressure Gradient Turbulent Boundary Layer,” Ph.D. thesis, Stockholm Royal Institute of Technology, Stockholm.

Elbing, B., Winkel, E., Lay, K., Ceccio, S., Dowling, D., and Perlin, M., 2008, “Bubble-Induced Skin-Friction Drag Reduction and the Abrupt Transition to Air-Layer Drag Reduction,” J. Fluid Mech., 612 , pp. 201–236.

[CrossRef]Winkel, E., Oweis, G., Vanapalli, S., Dowling, D., Perlin, M., Solomon, M., and Ceccio, S., 2009, “High-Reynolds-Number Turbulent Boundary Layer Friction Drag Reduction From Wall-Injected Polymer Solutions,” J. Fluid Mech., 621 , pp. 259–288.

[CrossRef]Swanson, C., Julian, B., Ihas, G., and Donnelly, R., 2002, “Pipe Flow Measurements Over a Wide Range of Reynolds Numbers Using Liquid Helium and Various Gases,” J. Fluid Mech., 461 , pp. 51–60.

[CrossRef]Barenblatt, G., and Chorin, A., 1998, “New Perspectives in Turbulence: Scaling Laws, Asymptotics and Intermittency,” SIAM Rev., 40 , pp. 265–291.

[CrossRef]McKeon, B., 2003, “High Reynolds Number Turbulent Pipe Flow,” Ph.D. thesis, Princeton University, Princeton, NJ.

Wosnik, M., Castillo, L., and George, W., 2000, “A Theory for Turbulent Pipe and Channel Flows,” J. Fluid Mech., 421 , pp. 115–145.

[CrossRef]Kunkel, G., Arnold, C., and Smits, A., 2006, “Development of NSTAP: A Nanoscale Thermal Anemometry Probe,” Proceedings of the 36th AIAA Fluid Dynamics Conference .

Bailey, S., Kunkel, G., Hultmark, M., Vallikivi, M., Hill, J., Meyer, K., Tsay, C., Arnold, C., and Smits, A., “Turbulence Measurements Using a Nanoscale Thermal Anemometry Probe,” J. Fluid Mech., to be published.

Andreas, E., Claffey, K., Jordan, R., Fairal, C., Guest, P., Persson, P., and Grachev, A., 2006, “Evaluations of the von Karman Constant in the Atmospheric Surface Layer,” J. Fluid Mech., 559 , pp. 117–149.

[CrossRef]Klewicki, J., Foss, J., and Wallace, J., 1998, “High Reynolds Number [Rθ=O(106)] Boundary Layer Turbulence in the Atmospheric Surface Layer Above Utah’s West Desert,” "*Flow at Ultrahigh Reynolds and Rayleigh Numbers: A Status Report*", R.Donnelly and K.Sreenivasan, eds., Springer-Verlag, New York, pp. 450–466.

Metzger, M., McKeon, B., and Holmes, H., 2007, “The Near-Neutral Atmospheric Surface Layer: Turbulence and Non-Stationarity,” Philos. Trans. R. Soc. London, Ser. A, 365 , pp. 859–876.

[CrossRef]Carlier, J., and Stanislas, M., 2005, “Experimental Study of Eddy Structures in a Turbulent Boundary Layer Using Particle Image Velocimetry,” J. Fluid Mech., 535 , pp. 143–188.

[CrossRef]Stanislas, M., Perret, L., and Foucaut, J. -M., 2008, “Vortical Structures in the Turbulent Boundary Layer: A Possible Route to a Universal Representation,” J. Fluid Mech., 602 , pp. 327–382.

[CrossRef]Talamelli, A., Persiani, F., Fransson, J., Alfredsson, P., Johansson, A., Nagib, H., Ruedi, J., Sreenivasan, K., and Monkewitz, P., 2009, “CICLoPE: A Response to the Need for High Reynolds Number Experiments,” Fluid Dyn. Res., 41 , p. 021407.

[CrossRef]Prandtl, L., 1925, “Bericht uber die Entstehung der Turbulenz,” Z. Angew. Math. Mech., 5 , pp. 136–139.

Von Kármán, Th., 1930, “Mechanische Ähnlichkeit und Turbulenz,” Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl., 1 , pp. 58–76.

Townsend, A., 1976, "*The Structure of Turbulent Shear Flow*", Cambridge University Press, Cambridge, UK.

Perry, A., and Chong, M., 1982, “On the Mechanism of Wall Turbulence,” J. Fluid Mech., 119 , pp. 173–217.

[CrossRef]Perry, A., and Marusic, I., 1995, “A Wall-Wake Model for the Turbulence Structure of Boundary Layers. Part 1. Extension of the Attached Eddy Hypothesis,” J. Fluid Mech., 298 , pp. 361–388.

[CrossRef]Oberlack, M., 2001, “A Unified Approach for Symmetries in Plane Parallel Turbulent Shear Flows,” J. Fluid Mech., 427 , pp. 299–328.

[CrossRef]Fife, P., Klewicki, J., and Wei, T., 2009, “Time Averaging in Turbulence Settings May Reveal an Infinite Hierarchy of Length Scales,” Discrete Contin. Dyn. Syst., 24 , pp. 781–807.

[CrossRef]Marusic, I., 2001, “On the Role of Large-Scale Structures in Wall-Turbulence,” Phys. Fluids, 13 , pp. 735–743.

[CrossRef]Nickels, T., Marusic, I., Hafez, S., Hutchins, N., and Chong, M., 2007, “Some Predictions of the Attached Eddy Model for a High Reynolds Number Boundary Layer,” Philos. Trans. R. Soc. London, Ser. A, 365 , pp. 807–822.

[CrossRef]Marušic, I., and Perry, A. E., 1995, “A Wall-Wake Model for the Turbulence Structure of Boundary Layers. Part 2. Further Experimental Support,” J. Fluid Mech., 298 , pp. 389–407.

[CrossRef]Adrian, R., Meinhart, C., and Tomkins, C., 2000, “Vortex Organization in the Outer Region of the Turbulent Boundary Layer,” J. Fluid Mech., 422 , pp. 1–54.

[CrossRef]Ganapathisubramani, B., Longmire, E., and Marusic, I., 2003, “Characteristics of Vortex Packets in Turbulent Boundary Layers,” J. Fluid Mech., 487 , pp. 35–46.

George, W., and Castillo, L., 1997, “Zero Pressure Gradient Turbulent Boundary Layer,” Appl. Mech. Rev., 50 , pp. 689–729.

[CrossRef]Jones, M., Nickels, T., and Marusic, I., 2008, “On the Asymptotic Similarity of the Zero-Pressure Gradient Turbulent Boundary Layer,” J. Fluid Mech., 616 , pp. 195–203.

[CrossRef]Barenblatt, G., 1996, "*Scaling, Self-Similarity, and Intermediate Asymptotics*", Cambridge University Press, Cambridge, UK.

Barenblatt, G., Chorin, A., and Prostokishin, V., 2000, “Self-Similar Intermediate Structures in Turbulent Boundary Layers at Large Reynolds Numbers,” J. Fluid Mech., 410 , pp. 263–283.

[CrossRef]Barenblatt, G. I., and Chorin, A. J., 2004, “A Mathematical Model for the Scaling of Turbulence,” Proc. Natl. Acad. Sci. U.S.A., 101 , pp. 15023–15026.

[CrossRef]Chorin, A., 1994, "*Vorticity and Turbulence*", Springer, Berlin.

George, W., 2007, “Is There a Universal Log Law for Turbulent Flows?,” Philos. Trans. R. Soc. London, Ser. A, 365 , pp. 789–806.

[CrossRef]Izakson, A., 1937, “On the Formula for the Velocity Distribution Near Walls,” Tech. Phys. USSR IV, 2 , pp. 155–162.

Millikan, C., 1939, “A Critical Discussion of Turbulent Flows in Channels and Circular Tubes,” "*Proceedings of the Fifth International Congress of Applied Mechanics*", J.D.Hartog and H.Peters, eds., Wiley, New York, pp. 5772–5776.

Yajnik, K., 1970, “Asymptotic Theory of Turbulent Shear Flows,” J. Fluid Mech., 42 , pp. 411–427.

[CrossRef]Afzal, N., 2001, “Power Law and Log Law Velocity Profiles in Fully Developed Turbulent Boundary Layer Flow: Equivalent Relations at Large Reynolds Number,” Acta Mech., 151 , pp. 171–183.

[CrossRef]Seena, A., and Afzal, N., 2008, “Intermediate Scaling of Turbulent Momentum and Heat Transfer in a Transitional Rough Channel,” ASME J. Heat Transfer, 130 , p. 031701.

[CrossRef]Walker, J., 1998, “Turbulent Boundary Layers II: Further Developments,” "*Recent Advances in Boundary Layer Theory*" (CISM Courses and Lectures ), A.Kluwick, ed., Springer-Verlag, Vienna, Vol. 390 , pp. 145–230.

Stephani, H., 1989, "*Differential Equations: Their Solution Using Symmetries*", Cambridge University Press, Cambridge, UK.

Morgan, A., 1952, “The Reduction by One of the Number of Independent Variables in Some Systems of Partial Differential Equations,” Q. J. Math., 3 , pp. 250–259.

[CrossRef]Oberlack, M., 1999, “Similarity in Non-Rotating and Rotating Turbulent Pipe Flows,” J. Fluid Mech., 379 , pp. 1–22.

[CrossRef]Oberlack, M., Cabot, W., Reif, B. P., and Weller, T., 2006, “Group Analysis, Direct Numerical Simulation and Modelling of a Turbulent Channel Flow With Streamwise Rotation,” J. Fluid Mech., 562 , pp. 383–403.

[CrossRef]Lindgren, B., Osterlund, J., and Johansson, A., 2004, “Evaluation of Scaling Laws Derived From Lie Group Symmetry Methods in Zero-Pressure-Gradient Turbulent Boundary Layers,” J. Fluid Mech., 502 , pp. 127–152.

[CrossRef]Klewicki, J., Fife, P., Wei, T., and McMurtry, P., 2006, “Overview of a Methodology for Scaling the Indeterminate Equations of Wall-Turbulence,” AIAA J., 44 , pp. 2475–2481.

[CrossRef]Wei, T., McMurtry, P., Klewicki, J., and Fife, P., 2005, “Meso-Scaling the Reynolds Shear Stress in Turbulent Channel and Pipe Flows,” AIAA J., 43 , pp. 2350–2353.

[CrossRef]Wei, T., Fife, P., Klewicki, J., and McMurtry, P., 2005, “Scaling Heat Transfer in Fully Developed Turbulent Channel Flow,” Int. J. Heat Mass Transfer, 48 , pp. 5284–5296.

[CrossRef]Wei, T., Fife, P., and Klewicki, J., 2007, “On Scaling the Mean Momentum Balance and Its Solutions in Turbulent Couette-Poiseuille Flow,” J. Fluid Mech., 573 , pp. 371–398.

[CrossRef]Metzger, M., Lyons, A., and Fife, P., 2008, “Mean Momentum Balance in Moderately Favourable Pressure Gradient Turbulent Boundary Layers,” J. Fluid Mech., 617 , pp. 107–140.

[CrossRef]Klewicki, J., Fife, P., and Wei, T., 2009, “On the Logarithmic Mean Profile,” J. Fluid Mech., 638 , pp. 73–93.

[CrossRef]Klewicki, J., Fife, P., Wei, T., and McMurtry, P., 2007, “A Physical Model of the Turbulent Boundary Layer Consonant With Mean Momentum Balance Structure,” Proc. R. Soc. London, Ser. A, 365 , pp. 823–839.

Kline, S., and Robinson, S., 1990, “Quasi-Coherent Structures in the Turbulent Boundary Layer: Part 1. Status Report on a Community-Wide Summary of the Data,” "*Near-Wall Turbulence: 1988 Zoran Zaric Memorial Conference*", S.Kline and N.Afgan, eds., Hemisphere, New York, pp. 200–247.

Jiménez, J., and Moin, P., 1991, “The Minimal Flow Unit in Near Wall Turbulence,” J. Fluid Mech., 225 , pp. 213–240.

[CrossRef]Jiménez, J., 1994, “On the Structure and Control of Near Wall Turbulence,” Phys. Fluids, 6 , pp. 944–953.

[CrossRef]Jiménez, J., and Pinelli, A., 1999, “The Autonomous Cycle of Near-Wall Turbulence,” J. Fluid Mech., 389 , pp. 335–359.

[CrossRef]Jeong, J., Hussain, F., Schoppa, W., and Kim, J., 1997, “Coherent Structures Near the Wall in a Turbulent Channel Flow,” J. Fluid Mech., 332 , pp. 185–214.

Schoppa, W., and Hussain, F., 1997, “Genesis and Dynamics of Coherent Structures in Nearwall Turbulence: A New Look,” in "*Self-Sustaining Mechanisms of Wall Turbulence*", R.Panton, ed., Computational Mechanics, Southampton, UK, pp. 385–422.

Schoppa, W., and Hussain, F., 2002, “Coherent Structure Generation in Near-Wall Turbulence,” J. Fluid Mech., 453 , pp. 57–108.

[CrossRef]Hamilton, J., Kim, J., and Waleffe, F., 1995, “Regeneration Mechanisms of Near-Wall Turbulence Structures,” J. Fluid Mech., 287 , pp. 317–348.

[CrossRef]Waleffe, F., 1997, “On a Self-Sustaining Process in Shear Flows,” Phys. Fluids, 9 , pp. 883–900.

[CrossRef]Waleffe, F., and Kim, J., 1997, “How Streamwise Rolls and Streaks Self-Sustain in a Shear Flow,” "*Self-Sustaining Mechanisms of Wall Turbulence*", R.Panton, ed., Computational Mechanics, Southampton, UK, pp. 309–332.

Waleffe, F., 2001, “Exact Coherent Structures in Channel Flow,” J. Fluid Mech., 435 , pp. 93–102.

[CrossRef]Klewicki, J., and Metzger, M., 1996, “Viscous Wall Region Structure in High and Low Reynolds Number Turbulent Boundary Layers,” AIAA Paper No. 96-2009.

Wei, T., and Willmarth, W., 1989, “Reynolds Number Effects on the Structure of a Turbulent Channel Flow,” J. Fluid Mech., 204 , pp. 57–95.

[CrossRef]Thomas, A., and Bull, M., 1983, “On the Role of Wall-Pressure Fluctuations in Deterministic Motions in the Turbulent Boundary Layer,” J. Fluid Mech., 128 , pp. 283–322.

[CrossRef]Wark, C., and Nagib, H., 1991, “Experimental Investigation of Coherent Structures in Turbulent Boundary Layers,” J. Fluid Mech., 230 , pp. 183–208.

[CrossRef]Falco, R., 1991, “A Coherent Structure Model of the Turbulent Boundary Layer and Its Ability to Predict Reynolds Number Dependence,” Philos. Trans. R. Soc. London, Ser. A, 336 , pp. 103–129.

[CrossRef]Morrison, J., Subramanian, C., and Bradshaw, P., 1992, “Bursts and the Law of the Wall in Turbulent Boundary Layers,” J. Fluid Mech., 241 , pp. 75–108.

[CrossRef]Klewicki, J., 1997, “Self-Sustaining Traits of Near-Wall Motions Underlying Boundary Layer Stress Transport,” "*Self-Sustaining Mechanisms of Wall Turbulence*", R.Panton, ed., Computational Mechanics, Southampton, UK, pp. 135–166.

Tardu, F., Nacereddine, R., and Doche, O., 2008, “An Interactive Bypass Transition Mechanism in Wall-Bounded Flows,” J. Fluid Mech., 615 , pp. 345–369.

[CrossRef]Perry, A., Henbest, S., and Chong, M., 1986, “A Theoretical and Experimental Study of Wall Turbulence,” J. Fluid Mech., 165 , pp. 163–199.

[CrossRef]Perry, A., and Li, J., 1990, “Experimental Support for the Attached Eddy Hypothesis in Zero Pressure Gradient Turbulent Boundary Layers,” J. Fluid Mech., 218 , pp. 405–438.

[CrossRef]Perry, A., Marusic, I., and Li, J., 1994, “Wall Turbulence Closure Based on Classical Similarity Laws and the Attached Eddy Hypothesis,” Phys. Fluids, 6 , pp. 1024–1035.

[CrossRef]Theodorsen, T., 1952, “Mechanism of Turbulence,” Second Midwestern Conference on Fluid Mechanics , The Ohio State University, pp. 1–16.

Wu, X., and Moin, P., 2009, “Direct Numerical Simulation of Turbulence in a Nominally Zero-Pressure-Gradient Flat-Plate Boundary Layer,” J. Fluid Mech., 630 , pp. 5–41.

[CrossRef]Marusic, I., Uddin, A., and Perry, A., 1997, “Similarity Law for the Streamwise Turbulence Intensity in Zero Pressure-Gradient Turbulent Boundary Layers,” Phys. Fluids, 9 , pp. 3718–3724.

[CrossRef]Hunt, J., and Morrison, J., 2000, “Eddy Structure in Turbulent Boundary Layers,” Eur. J. Mech. B/Fluids, 19 , pp. 673–694.

[CrossRef]Drobinski, P., Carlotti, P., Newsom, R., Banta, R., Foster, R., and Redelsperger, J. -L., 2004, “The Structure of the Near-Neutral Surface Layer,” J. Atmos. Sci., 61 , pp. 699–714.

[CrossRef]McNaughton, K., 2004, “Attached Eddies and Production Spectra in the Atmospheric Logarithmic Layer,” Boundary-Layer Meteorol., 111 , pp. 1–18.

[CrossRef]Antonia, R., and Kim, J., 1994, “Low Reynolds Number Effects on Near-Wall Turbulence,” J. Fluid Mech., 276 , pp. 61–80.

[CrossRef]Panton, R., 2009, “Scaling and Correlation of Vorticity Fluctuations in Turbulent Channels,” Phys. Fluids, 21 , p. 115104.

[CrossRef]Sreenivasan, K., and Bershadskii, A., 2006, “Finite-Reynolds-Number Effects in Turbulence Using Logarithmic Expansions,” J. Fluid Mech., 554 , pp. 477–498.

[CrossRef]Davidson, P., Nickels, T., and Krogstad, P. -A., 2006, “The Logarithmic Structure Function Law in Wall-Layer Turbulence,” J. Fluid Mech., 550 , pp. 51–60.

[CrossRef]Davidson, P., Krogstad, P. -A., and Nickels, T., 2006, “A Refined Interpretation of the Logarithmic Structure Function Law in Wall Layer Turbulence,” Phys. Fluids, 18 , p. 065112.

[CrossRef]Davidson, P., and Krogstad, P. -A., 2009, “A Simple Model for the Streamwise Fluctuations in the Log-Law Region of a Boundary Layer,” Phys. Fluids, 21 , p. 055105.

[CrossRef]Dallas, V., Vassilicos, J., and Hewitt, G., 2009, “Stagnation Point von Karman Coefficient,” Phys. Rev. E, 80 , p. 046306.

[CrossRef]Kerstein, A., 1999, “One-Dimensional Turbulence: Model Formulation and Application to Homogeneous Turbulence, Shear Flows, and Buoyant Stratified Flows,” J. Fluid Mech., 392 , pp. 277–334.

[CrossRef]McKeon, B., Li, J., Jiang, W., Morrison, J., and Smits, A., 2004, “Further Observations on the Mean Velocity Distribution in Fully-Developed Turbulent Pipe Flow,” J. Fluid Mech., 501 , pp. 135–147.

[CrossRef]McKeon, B., Zagarola, M., and Smits, A., 2005, “A New Friction Factor Relationship for Fully Developed Pipe Flow,” J. Fluid Mech., 538 , pp. 429–443.

[CrossRef]McKeon, B., and Morrison, J., 2007, “Asymptotic Scaling in Turbulent Pipe Flow,” Philos. Trans. R. Soc. London, Ser. A, 365 , pp. 771–787.

[CrossRef]Dimotakis, P., 2000, “The Mixing Transition In Turbulent Flows,” J. Fluid Mech., 409 , pp. 69–98.

[CrossRef]Elsnab, J., Klewicki, J., Maynes, D., and Ameel, T., “Mean Dynamics of Channel Flow Transition,” J. Fluid Mech., to be published.

Jimenez, J., and Moser, R., 2007, “What Are We Learning From Simulating Wall Turbulence?,” Proc. R. Soc. London, Ser. A, 365 , pp. 715–732.

Klewicki, J., Murray, J., and Falco, R., 1994, “Vortical Motion Contributions to Stress Transport in Turbulent Boundary Layers,” Phys. Fluids, 6 , pp. 277–286.

[CrossRef]Mansour, N., Kim, J., and Moin, P., 1988, “Reynolds Stress and Dissipation-Rate Budgets in a Turbulent Channel Flow,” J. Fluid Mech., 194 , pp. 15–44.

[CrossRef]Spalart, P., 1988, “Direct Simulation of a Turbulent Boundary Layer Up to Rθ=1410,” J. Fluid Mech., 187 , pp. 61–98.

[CrossRef]Abe, H., Kawamura, H., and Matsuo, Y., 2001, “Direct Numerical Simulation of a Fully Developed Turbulent Channel Flow With Respect to the Reynolds Number Dependence,” ASME J. Fluids Eng., 123 , pp. 382–393.

[CrossRef]Komminaho, J., and Skote, M., 2002, “Reynolds Stress Budgets in Couette and Boundary Layer Flows,” Flow, Turbul. Combust., 68 , pp. 167–192.

[CrossRef]Sahay, A., and Sreenivasan, K., 1999, “The Wall-Normal Position in Pipe and Channel Flows at Which Viscous and Turbulent Shear Stresses Are Equal,” Phys. Fluids, 11 , pp. 3186–3188.

[CrossRef]Laadhari, F., 2002, “On the Evolution of Maximum Turbulent Kinetic Energy Production in a Channel Flow,” Phys. Fluids, 14 , pp. L65–L68.

[CrossRef]Laadhari, F., 2007, “Reynolds Number Effect on the Dissipation Function in Wall-Bounded Flows,” Phys. Fluids, 19 , p. 038101.

[CrossRef]Tsuji, Y., 1999, “Peak Position of Dissipation Spectrum in Turbulent Boundary Layers,” Phys. Rev. E, 59 , pp. 7235–7238.

[CrossRef]Mochizuki, S., and Nieuwstadt, F., 1996, “Reynolds-Number-Dependence of the Maximum in the Streamwise Velocity Fluctuations in Wall Turbulence,” Exp. Fluids, 21 , pp. 218–226.

[CrossRef]Moser, R., Kim, J., and Mansour, N., 1999, “Direct Numerical Simulation of Turbulent Channel Flow Up to Reτ=590,” Phys. Fluids, 11 , pp. 943–945.

[CrossRef]Metzger, M., Klewicki, J., Bradshaw, K., and Sadr, R., 2001, “Scaling the Near-Wall Axial Turbulent Stress in the Zero Pressure Gradient Boundary Layer,” Phys. Fluids, 13 , pp. 1819–1821.

[CrossRef]Jimenez, J., and Hoyas, S., 2006, “Turbulent Fluctuations Above the Buffer Layer of Wall-Bounded Flows,” J. Fluid Mech., 611 , pp. 215–236.

Morrison, J., Jiang, W., Mckeon, B., and Smits, A., 2004, “Scaling of the Streamwise Velocity Component in Turbulent Pipe Flow,” J. Fluid Mech., 508 , pp. 99–131.

[CrossRef]Kunkel, G., and Marusic, I., 2006, “Study of the Near-Wall-Turbulent Region of the High-Reynolds-Number Boundary Layer Using an Atmospheric Flow,” J. Fluid Mech., 548 , pp. 375–402.

[CrossRef]Priyadarshana, P., Klewicki, J., Treat, S., and Foss, J., 2007, “Statistical Structure of Turbulent-Boundary-Layer Velocity-Vorticity Products at High and Low Reynolds Numbers,” J. Fluid Mech., 570 , pp. 307–346.

[CrossRef]Zhao, R., and Smits, A., 2007, “Scaling of the Wall-Normal Turbulence Component in High-Reynolds Number Pipe Flow,” J. Fluid Mech., 576 , pp. 457–473.

[CrossRef]Panton, R., 1997, “A Reynolds Stress Function for Wall Layers,” ASME J. Fluids Eng., 119 , pp. 325–330.

[CrossRef]Sreenivasan, K., 1989, “The Turbulent Boundary Layer,” "*Frontiers in Experimental Fluid Mechanics*" (Lecture Notes in Engineering ), M.Gad-el-Hak, ed., Springer-Verlag, Berlin, Vol. 46 , pp. 159–209.

Guala, M., Hommema, S., and Adrian, R., 2006, “Large-Scale and Very-Large-Scale Motions in Turbulent Pipe Flow,” J. Fluid Mech., 554 , pp. 521–542.

[CrossRef]Hutchins, N., and Marusic, I., 2007, “Evidence of Very Long Meandering Features in the Logarithmic Region of Turbulent Boundary Layers,” J. Fluid Mech., 579 , pp. 1–28.

[CrossRef]Priyadarshana, P., and Klewicki, J., 2004, “Study of the Motions Contributing to the Reynolds Stress in High and Low Reynolds Number Turbulent Boundary Layers,” Phys. Fluids, 16 , pp. 4586–4600.

[CrossRef]Klewicki, J., 1989, “On the Interactions Between the Inner and Outer Region Motions in Turbulent Boundary Layers,” Ph.D. thesis, Michigan State University, East Lansing, MI.

Metzger, M., 2002, “Scalar Dispersion in High Reynolds Number Turbulent Boundary Layers,” Ph.D. thesis, University of Utah, Salt Lake City, UT.

Klewicki, J., and Falco, R., 1996, “Spanwise Vorticity Structure in Turbulent Boundary Layers,” Int. J. Heat Fluid Flow, 17 , pp. 363–376.

[CrossRef]Emmerling, R., 1973, “Translation of an Extended Version of Mittielungen aus den Max-Planck-Institut fur Stromungsforschung und der Aerodynamischen Versuchsanstalt,” No. 56.

Wu, Y., and Christensen, K., 2006, “Population Trends of Spanwise Vortices in Wall Turbulence,” J. Fluid Mech., 568 , pp. 55–76.

[CrossRef]Natrajan, V., Wu, Y., and Christensen, K., 2007, “Spatial Signatures of Retrograde Spanwise Vortices in Wall Turbulence,” J. Fluid Mech., 574 , pp. 155–167.

[CrossRef]Ganapathisubramani, B., 2008, “Statistical Structure of Momentum Sources and Sinks in the Outer Region of a Turbulent Boundary Layer,” J. Fluid Mech., 606 , pp. 225–237.

[CrossRef]Hu, Z., Morley, C., and Sandham, N., 2006, “Wall Pressure and Shear Stress Spectra From Direct Simulations of Channel Flow,” AIAA J., 44 , pp. 1541–1549.

[CrossRef]Farabee, T., and Casarella, M., 1991, “Spectral Features of Wall Pressure Fluctuations Beneath Turbulent Boundary Layers,” Phys. Fluids, 3 , pp. 2410–2420.

[CrossRef]Bradshaw, P., 1967, “Inactive Motions and Pressure Fluctuations in Turbulent Boundary Layers,” J. Fluid Mech., 30 , pp. 241–258.

[CrossRef]Jeong, J., and Hussain, F., 1995, “On the Identification of a Vortex,” J. Fluid Mech., 285 , pp. 69–94.

[CrossRef]Chakraborty, P., Balachandar, S., and Adrian, R., 2005, “Relationships Between Local Vortex Identification Schemes,” J. Fluid Mech., 535 , pp. 189–214.

[CrossRef]Head, M., and Bandyopadhyay, P., 1981, “New Aspects of Turbulent Boundary Layer Structure,” J. Fluid Mech., 107 , pp. 297–337.

[CrossRef]Zhou, J., Adrian, R., Balachandar, S., and Kendall, T., 1999, “Mechanisms for Generation Coherent Packets of Hairpin Vortices in Channel Flow,” J. Fluid Mech., 387 , pp. 353–396.

[CrossRef]Falco, R., 1977, “Coherent Motions in the Outer Region of Turbulent Boundary Layers,” Phys. Fluids, 20 , pp. S124–S132.

[CrossRef]Falco, R., 1983, “New Results, A Review and Synthesis of the Mechanism of Turbulence Production in Boundary Layers and Its Modification,” AIAA Paper No. 83-0377.

Klewicki, J., Gendrich, C., Foss, J., and Falco, R., 1990, “On the Sign of the Instantaneous Spanwise Vorticity Component in the Near-Wall Region of Turbulent Boundary Layers,” Phys. Fluids A, 2 , pp. 1497–1500.

[CrossRef]Klewicki, J., and Hirschi, C., 2004, “Flow Field Properties Local to Near-Wall Shear Layers in a Low Reynolds Number Turbulent Boundary Layer,” Phys. Fluids, 16 , pp. 4163–4176.

[CrossRef]del Álamo, J. C., Jimenez, J., Zandonade, P., and Moser, R., 2006, “Self-Similar Vortex Clusters in the Turbulent Logarithmic Region,” J. Fluid Mech., 561 , pp. 329–358.

[CrossRef]Chong, M., Perry, A., and Cantwell, B., 1990, “A General Classification of Three-Dimensional Flow Fields,” Phys. Fluids A, 2 , pp. 765–777.

[CrossRef]Wark, C., 1988, “Experimental Investigation of Coherent Structures in Turbulent Boundary Layers,” Ph.D. thesis, Illinois Institute of Technology, Chicago, IL.

Guezennec, Y., 1985, “Documentation of Large Coherent Structures Associated With Wall Events in Turbulent Boundary Layers,” Ph.D. thesis, Illinois Institute of Technology, Chicago, IL.

Meinhart, C., and Adrian, R., 1995, “On the Existence of Uniform Momentum Zones in a Turbulent Boundary Layer,” Phys. Fluids, 7 , pp. 694–696.

[CrossRef]Christensen, K., and Adrian, R., 2001, “Statistical Evidence of Hairpin Vortex Packets in Wall Turbulence,” J. Fluid Mech., 431 , pp. 433–443.

[CrossRef]Ganapathisubramani, B., Hutchins, N., Hambleton, W., Longmire, E., and Marusic, I., 2005, “Investigation of Large Scale Coherence in a Turbulent Boundary Layer Using Two-Point Correlations,” J. Fluid Mech., 524 , pp. 57–80.

[CrossRef]Hambleton, W., Hutchins, N., and Marusic, I., 2006, “Simultaneous Orthogonal-Plane Particle Image Velocimetry Measurements in a Turbulent Boundary Layer,” J. Fluid Mech., 560 , pp. 53–64.

[CrossRef]Adrian, R., Balachandar, S., and Liu, Z. -C., 2001, “Spanwise Growth of Vortex Structures in Wall-Turbulence,” KSME Int. J., 15 , pp. 1741–1749.

Tomkins, C., and Adrian, R., 2003, “Spanwise Structure and Scale Growth in Turbulent Boundary Layers,” J. Fluid Mech., 490 , pp. 37–74.

[CrossRef]Toh, S., and Itano, T., 2005, “Interaction Between a Large-Scale Structure and Near-Wall Structures in Channel Flow,” J. Fluid Mech., 524 , pp. 249–262.

[CrossRef]Hommema, S., and Adrian, R., 2003, “Packet Structure of Surface Eddies in the Atmospheric Boundary Layer,” Boundary-Layer Meteorol., 106 , pp. 147–170.

[CrossRef]Morris, S., Stolpa, S., Slaboch, P., and Klewicki, J., 2007, “Near-Surface Particle Image Velocimetry Measurements in a Transitionally Rough-Wall Atmospheric Boundary Layer,” J. Fluid Mech., 580 , pp. 319–338.

[CrossRef]Marusic, I., and Heuer, W., 2007, “Reynolds Number Invariance of the Structure Inclination Angle in Wall-Turbulence,” Phys. Rev. Lett., 99 , p. 114504.

[CrossRef]Monty, J., Stewart, J., Williams, R., and Chong, M., 2007, “Large Scale Features in Turbulent Pipe and Channel Flows,” J. Fluid Mech., 589 , pp. 147–156.

[CrossRef]Balakumar, B., and Adrian, R., 2007, “Large- and Very-Large-Scale Motions in Channel and Boundary-Layer Flows,” Philos. Trans. R. Soc. London, Ser. A, 365 , pp. 665–681.

[CrossRef]Bailey, S., Hultmark, M., Smits, A., and Schultz, M., 2008, “Azimuthal Structure of Turbulence in High Reynolds Number Pipe Flow,” J. Fluid Mech., 615 , pp. 121–138.

[CrossRef]Klewicki, J., Metzger, M., Kelner, E., and Thurlow, E., 1995, “Viscous Sublayer Flow Visualizations at Rθ≅1,500,000,” Phys. Fluids, 7 , pp. 857–863.

[CrossRef]Metzger, M., Fershtut, A., Kunkel, C., and Klewicki, J., 2010, “Reynolds Number Scaling of Pocket Events in the Viscous Sublayer,” Expts. in Fluids, to be published.

Mathis, R., Monty, J., Hutchins, N., and Marusic, I., 2009, “Comparison of Large-Scale Amplitude Modulation in Turbulent Boundary Layers, Pipes, and Channel Flows,” Phys. Fluids, 21 , p. 111703.

[CrossRef]McKeon, B., and Sharma, J., 2010, “A Critical Layer Model for Turbulent Pipe Flow,” J. Fluid Mech., in press.

Metzger, M., 2006, “Length and Time Scales of the Near-Surface Axial Velocity in a High Reynolds Number Turbulent Boundary Layer,” Int. J. Heat Fluid Flow, 27 , pp. 534–541.

[CrossRef]Coles, D., 1968, “The Young Person’s Guide to the Data,” Computation of Turbulent Boundary Layers—1968 AFOSR-IFP-Stanford Conference , D.E.Coles and E.A.Hirst, eds., Stanford University, p. 1.

Iwamoto, K., Suzuki, Y., and Kasagi, N., 2002, “Reynolds Number Effect on Wall Turbulence: Toward Effective Feedback Control,” Int. J. Heat Fluid Flow, 23 , pp. 678–689.

[CrossRef]Fernholz, H., Krauss, E., Nockemann, M., and Schober, M., 1995, “Comparative Measurements in the Canonical Boundary Layer at Rθ≤6×104 on the Wall of the German-Dutch Wind Tunnel,” Phys. Fluids, 7 , pp. 1275–1281.

[CrossRef]Skote, M., 2001, “Studies of Turbulent Boundary Layer Flow Through Direct Numerical Simulation,” Ph.D. thesis, Stockholm Royal Institute of Technology, Stockholm.

Eggels, J., Unger, F., Weiss, H., Westerweel, J., Adrian, R., and Friedrich, R., 1994, “Fully Developed Turbulent Pipe Flow: A Comparison Between Direct Numerical Simulation and Experiment,” J. Fluid Mech., 268 , pp. 175–209.

[CrossRef]Abe, H., Matsuo, Y., and Kawamura, H., 2005, “A DNS Study of Reynolds-Number Dependence on Pressure Fluctuations in a Turbulent Channel Flow,” Fourth International Symposium on Turbulence and Shear Flow Phenomena , J.Humphrey, T.Gatski, J.Eaton, R.Friedrich, N.Kasagi, and M.Leschziner, eds., Vol. 1 , pp. 189–194.

Morrison, J., 2007, “The Interaction Between the Inner and Outer Regions of Turbulent Wall-Bounded Flow,” Philos. Trans. R. Soc. London, Ser. A, 365 , pp. 683–698.

[CrossRef]Smith, C., and Metzler, S., 1983, “The Characteristics of Low-Speed Streaks in the Near-Wall Region of a Turbulent Boundary Layer,” J. Fluid Mech., 129 , pp. 27–54.

[CrossRef]Rajagopalan, S., and Antonia, R., 1993, “Structure of the Velocity Field Associated With the Spanwise Vorticity in the Wall Region of a Turbulent Boundary Layer,” Phys. Fluids A, 5 , pp. 2502–2510.

[CrossRef]Crawford, C., and Karniadakis, G., 1997, “Reynolds Stress Analysis of EMHD-Controlled Wall Turbulence. Part 1. Streamwise Forcing,” Phys. Fluids, 9 , pp. 788–806.

[CrossRef]Ong, L., 1992, “Visualization of Turbulent Flows With Simultaneous Velocity and Vorticity Measurements,” Ph.D. thesis, University of Maryland, College Park, MD.