0
Research Papers: Flows in Complex Systems

On the Effects of a Flexible Structure on Boundary Layer Stability and Transition

[+] Author and Article Information
Ashraf Al Musleh, Abdelkader Frendi

Professor e-mail: frendi@eng.uah.edu Department of Mechanical and Aerospace Engineering,  University of Alabama in Huntsville, Huntsville, AL 35899

J. Fluids Eng. 133(7), 071103 (Jul 22, 2011) (6 pages) doi:10.1115/1.4004490 History: Received July 28, 2010; Revised June 22, 2011; Published July 22, 2011; Online July 22, 2011

Delaying the onset of boundary layer transition has become a major research area in the last few years. This delay can be achieved by either active or passive control techniques. In the present paper, the effects of flexible or compliant structures on boundary layer stability and transition is studied. The Orr-Sommerfeld equation coupled to a beam equation representing the flexible structure is solved for a Blasius type boundary layer. A parametric study consisting of the beam thickness and material properties is carried out. In addition, the effect of fluid wall shear stress on boundary layer stability is analyzed. It is found that high density and high Young modulus materials behave like rigid structures and therefore do not alter the stability characteristic of the boundary layer. Whereas low density and low Young modulus materials are found to stabilize the boundary layer. High values of fluid wall shear stress are found to destabilize the boundary layer. Our results are in good agreement with those published in the literature.

FIGURES IN THIS ARTICLE
<>
Copyright © 2011 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Figure 1

Schematic diagram of a boundary layer flow over a rigid structure

Grahic Jump Location
Figure 2

The distribution of eigenvalues of the even modes for a plane Poiseuille flow at α = 1.0 and Re = 10,000

Grahic Jump Location
Figure 3

Effect of the beam material on boundary layer stability (h=2mm)

Grahic Jump Location
Figure 4

Effect of Young modulus on boundary layer stability ρm=945kg/m3 and h=2mm

Grahic Jump Location
Figure 5

Effect of Young modulus on boundary layer stability ρm=1300kg/m3 and h=0.508mm

Grahic Jump Location
Figure 6

Effect of beam thickness on boundary layer stability ρm=1300kg/m3 and E=5MPa

Grahic Jump Location
Figure 7

Combined effect of fluid wall shear stress and a flexible structure on boundary layer stability ρm=945kg/m3, E=1MPa, and h=2mm

Grahic Jump Location
Figure 8

Combined effect of fluid wall shear stress and a flexible structure on boundary layer stability ρm=1300kg/m3, E=5MPa, and h=0.508mm

Grahic Jump Location
Figure 9

Real part of the eigenfunction φ for a boundary layer over a rigid wall

Grahic Jump Location
Figure 10

Imaginary part of the eigenfunction ϕ for a boundary layer over a rigid wall

Grahic Jump Location
Figure 11

Real part of the eigenfunction φ for a boundary layer over a flexible structure, ρm=1300kg/m3, E=5MPa, and h=0.508mm

Grahic Jump Location
Figure 12

Imaginary part of the eigenfunction φ for a boundary layer over a flexible structure, ρm=1300kg/m3, E=5MPa, and h=0.508mm

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In