Taylor, G. I., 1923b, “Stability of a Viscous Liquid Contained Between Two Rotating Cylinders,” Philos. Trans. R. Soc.A223 , pp. 289–343.
Gollub, J. P., and Freilich, M. H., 1976, “Optical Heterodyne Test of Perturbation Expansions for the Taylor Instability,” Phys. Fluids, 19 , pp. 618–626.
[CrossRef]Heinrichs, R. M., Cannell, D. S., Ahlers, G., and Jefferson, M., 1988, “Experimental Test of the Perturbation Expansion for the Taylor Instability at Various Wave Numbers,” Phys. Fluids, 31 , pp. 250–255.
[CrossRef]Wereley, S. T., and Lueptow, R. M., 1994, “Azimuthal Velocity in Supercritical Circular Couette Flow,” Exp. Fluids, 18 , pp. 1–9.
[CrossRef]Davey, A., 1962, “The Growth of Taylor Vortices in Flow Between Rotating Cylinders,” J. Fluid Mech., 14 , pp. 336–368.
[CrossRef]Wereley, S. T., and Lueptow, R. M., 1998, “Spatio-Temporal Character of Non-Wavy and Wavy Taylor-Couette Flow,” J. Fluid Mech., 364 , pp. 59–80.
[CrossRef]Lewis, G. S., and Swinney, H. L., 1999, “Velocity Structure Functions, Scaling, and Transitions in High-Reynolds-Number Couette-Taylor Flow,” Phys. Rev. E, 59 (5), pp. 5457–5467.
[CrossRef]Coles, D., 1965, “Transition in Circular Couette Flow,” J. Fluid Mech., 21 , pp. 385–425.
[CrossRef]Meyer, K. A., 1967, “Time-Dependent Numerical Study of Taylor Vortex Flow,” Phys. Fluids, 10 (9), pp. 1874–1879.
[CrossRef]Alizary De Roquefort, T., and Grillaud, G., 1978. “Computation of Taylor Vortex Flow by a Transient Implicit Method,” Comput. Fluids., 6 , pp. 259–269.
[CrossRef]Neitzel, G. P., 1984, “Numerical Computation of Time-Dependent Taylor-Vortex Flows in Finite-Length Geometries,” J. Fluid Mech., 141 , pp. 51–66.
[CrossRef]King, G. P., Li, Y., Lee, W., Swinney, H. L., and Marcus, P. S., 1984, “Wave Speeds in Wavy Taylor-Vortex Flow,” J. Fluid Mech., 141 , pp. 365–390.
[CrossRef]Edwards, W. S., Beane, S. R., and Varma, S., 1991, “Onset of Wavy Vortices in the Finite-Length Couette-Taylor Problem,” Phys. Fluids A, 3 , pp. 1510–1518.
[CrossRef]Marcus, P. S., 1984b, “Simulation of Taylor-Couette Flow. Part 2: Numerical Results for Wavy-Vortex Flow With One Travelling Wave,” J. Fluid Mech., 146 , pp. 65–113.
[CrossRef]Marcus, P. S., 1984a, “Simulation of Taylor-Couette Flow. Part1: Numerical Methods and Comparison With Experiment,” J. Fluid Mech., 146 , pp. 45–64.
[CrossRef]Coughlin, K. T., and Marcus, P. S., 1992b, “Modulated Waves in Taylor-Couette Flow. Part 2. Numerical Simulation,” J. Fluid Mech., 234 , pp. 19–46.
[CrossRef]Ali, M., and Weidman, P. D., 1990, “On the Stability of Circular Couette Flow With Radial Heating,” J. Fluid Mech., 220 , pp. 53–84.
[CrossRef]Chen, J., and Kuo, J., 1990, “The Linear Stability of Steady Circular Couette Flow With a Small Radial Temperature Gradient,” Phys. Fluids A, 2 (9), pp. 1585–1591.
[CrossRef]Yih, C. S., 1961, “Dual Role of Viscosity in the Stability of Revolving Fluids of Variable Density,” Phys. Fluids, 4 (7), pp. 806–811.
[CrossRef]Roesner, K. G., 1978, “Hydrodynamic Stability of Cylindrical Couette-Flow,” Arch. Mech., 30 , pp. 619–627.
Kataoka, K., Doi, H., and Komai, T., 1977, “Heat/Mass Transfer in Taylor Vortex Flow With Constant Axial Flow Rates,” Int. J. Heat Mass Transfer, 20 , pp. 57–63.
[CrossRef]Ball, K. S., Farouk, B., and Dixit, V. C., 1989, “An Experimental Study of Heat Transfer in a Vertical Annulus With a Rotating Inner Cylinder,” Int. J. Heat Mass Transfer, 32 (8), pp. 1517–1527.
[CrossRef]Campero, R. J., and Vigil, R. D., 1997, “Axial Dispersion During Low-Reynolds Number Taylor Couette Flow: Intravortex Mixing Effects,” Chem. Eng. Sci.52 , pp. 3303–3310.
[CrossRef]Tam, W. Y., and Swinney, H. L., 1987, “Mass Transport in Turbulent Couette-Taylor Flow,” Phys. Rev. A, 36 , pp. 1374–1381.
[CrossRef]Vastano, J. A., Russo, T., and Swinney, H. L., 1990, “Bifurcation to Spatially Induced Chaos in a Reaction-Diffusion System,” Physica D, 46 , pp. 23–42.
[CrossRef]Kataoka, K., and Takigawa, T., 1981, “Intermixing Over Cell Boundary Between Taylor Vortices,” AIChE J., 27 , pp. 504–508.
[CrossRef]Legrand, J., and Coeuret, F., 1986, “Circumferential Mixing in One-Phase and Two-Phase Taylor Vortex Flows,” Chem. Eng. Sci.4 (1), pp. 47–53.
Howes, T., and Rudman, M., 1998, “Flow and Axial Dispersion Simulation for Traveling Axisymmetric Taylor Vortices,” AIChE J.44 , pp. 255–262.
[CrossRef]Ryrie, S., 1992, “Mixing by Chaotic Advection in a Class of Spatially Periodic Flows,” J. Fluid Mech.236 , pp. 1–19.
[CrossRef]Rudolph, M., Shinbrot, T., and Lueptow, R. M., 1998. “A Model of Mixing and Transport in Wavy Taylor-Couette Flow,” Physica D, 121 , pp. 163–174.
[CrossRef]Kim, J., and Moin, P., 1989, “Transport of Passive Scalars in a Turbulent Channel Flow,” "Turbulent Shear Flows", Springer-Verlag, Berlin, pp. 85–96.
Kawamura, H., Ohsaka, K., Abe, H., and YamamotoK., 1998, “DNS of Turbulent Heat Transfer in Channel Flow With Low to Medium-High Prandtl Number Fluid,” Int. J. Heat Fluid Flow, 19 , pp. 482–491.
[CrossRef]Smagorinski, J., 1963, “General Circulation Experiments With the Primitive Equations,” Mon. Weather Rev., 91 , pp. 99–164.
[CrossRef]Lilly, D. K., 1967, “The Representation of Small-Scale Turbulence in Numerical Simulation Experiments,” "Proc. IBM Scientific Computing Symposium on Environmental Sciences", Vol. 195 .
Deardorff, J. W., 2006, “A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers,” J. Fluid Mech., 41 (02), pp. 453–480.
[CrossRef]Nicoud, F., and Ducros, F., 1999, “Subgrid-Scale Stress Modeling Based on the Square of the Velocity Gradient Tensor,” Flow, Turbul. Combust., 62 , pp. 183–200.
[CrossRef]Van Driest, E. R., 1956. “On Turbulent Flow Near a Wall,” J. Aero. Sci., 23 , pp. 1007–1011.
Vanden Abeele, D., Degrez, G., and Snyder, D. O., 2003, “A Combined Spectral/Finite Elements Method for the Direct and Large Eddy Simulation of Turbulent Flows in Complex, Two Dimensional Geometries,” Proceeding CMFF03 , pp. 783–790.
Detandt, Y., Krivilyov, M., Salhi, Y., Vanden Abeele, D., and Fransaer, J., 2006, “Direct Numerical Simulation of Taylor-Couette Flows in the Fully Turbulent Regime,” "4th International Conference on Computational Fluid Dynamics, ICCFD4", HermanDeconinck and E.Dick, eds., Ghent, Belgium, July 10–14 July, Springer, Berlin, pp. 643–648.
Di Prima, R. C., and Swinney, H. L., 1981, “Instabilities and Transition in Flow Between Concentric Rotating Cylinders,” "Hydrodynamic Instabilities and the Transition to Turbulence", H.L.Swinney and J.P.Gollub, eds., Springer-Verlag, Berlin, pp. 139–180.
Manna, M., and Vacca, A., 1999, “An Efficient Method for the Solution of the Incompressible Navier-Stokes Equations in Cylindrical Geometries,” J. Comput. Phys., 151 , pp. 563–584.
[CrossRef]Lücke, M., Mihelcic, M., and Wingerath, K., 1985, “Front Propagation and Pattern Formation of Taylor Vortices Growing into Unstable Circular Couette Flow,” Phys. Rev. A, 31 , pp. 396–409.
[CrossRef]Eisenberg, M., Tobias, C. W. and Wilke, C. R., 1954, “Ionic Mass Transfer and Concentration Polarization at Rotating Electrodes,” J. Electrochem. Soc., 101 , pp. 306–319.
[CrossRef]Kim, J., Moin, P., and Moser, R., 1987, “Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number,” J. Fluid Mech.177 , pp. 133–166.
[CrossRef]
Krivilyov, M., Rasquin, M., Laguerre, R., Degrez, G., and Fransaer, J., 2009, “Modeling of Mass Transfer in (Electro)chemical Reactors Using a Hybrid Spectral/Finite-elements Method, "Proceedings of NCTAM-", Belgium, CD-ROM.
Roberts, P. H., 1965, “Appendix to Experiments on the Stability of Viscous Flow bBetween Rotating Cylinders,” Proc. R. Soc. London, Ser. A238 , pp. 531–556.
Batchelor, G. K., 1959, “Small-Scale Variation of Convected Quantities like Temperature in Turbulent Fluid. Part 1. General Discussion and the Case of Small Conductivity,” J. Fluid Mech., 5 , pp. 113–133.
[CrossRef]